Identificación 
Analizamos los residuos al cuadrado.
checkresiduals (modelo_auto) 
    Ljung-Box test
data:  Residuals from ARIMA(2,1,1)(2,0,0)[12]
Q* = 21.437, df = 19, p-value = 0.3131
Model df: 5.   Total lags used: 24 
 
 Errores_cuadrado =  resid (modelo_auto)^ 2  
 
Indicamos que sea una serie de tiempo.
 Serie_Errores_cuadrado <-  ts (Errores_cuadrado, start =  c (1994 ,1 ), end =  c (2021 ,8 ), frequency =  12 ) 
print (Serie_Errores_cuadrado) 
              Jan          Feb          Mar          Apr          May
1994 8.825083e-06 4.024444e-02 1.253395e-03 1.471864e-01 1.270564e+00
1995 6.614774e-02 2.688251e-01 6.949149e-01 4.105068e-02 2.376022e-01
1996 1.811964e-01 4.743478e-01 9.453873e-04 5.524046e-01 1.332695e-01
1997 3.345305e-01 3.765696e-01 4.551632e-02 1.711462e-01 9.295233e-04
1998 1.169296e+00 1.468641e-02 5.899657e-01 1.495268e-03 1.896942e-02
1999 1.566131e+00 3.207233e-01 9.348788e-05 9.809146e-02 2.722979e-01
2000 1.395422e-03 5.575112e-01 6.953595e-01 6.645878e-02 3.216144e-01
2001 2.825342e-01 4.661894e-02 4.999611e-02 1.698966e-01 8.888091e-04
2002 9.917972e-02 1.675313e-02 2.635208e-01 1.207040e-01 2.114733e-01
2003 1.879075e-03 1.612431e+00 2.808369e-01 6.975479e-02 1.041209e+00
2004 1.218799e+00 1.273448e+00 7.501892e-01 1.249055e+00 2.346700e-02
2005 4.860391e-01 9.000632e-01 2.446237e+00 6.232073e-02 1.636292e-02
2006 3.182225e-01 2.085195e-01 9.335448e-02 1.483562e+00 7.433158e-03
2007 4.195750e-03 3.324688e-01 1.633146e-01 3.797582e-03 1.739742e-01
2008 7.666534e-01 2.244157e-01 1.040309e-01 6.131235e-04 3.120516e-02
2009 2.048392e+00 1.214144e-02 1.281780e+00 8.426437e-02 8.861281e-01
2010 4.329416e-02 4.272663e-01 5.231308e-01 2.906261e-01 4.444931e-01
2011 3.291230e-03 1.746469e-01 5.526611e-04 8.543515e-01 1.661042e+00
2012 6.489195e-01 1.434283e+00 1.385947e-02 2.893160e-01 1.249121e-01
2013 2.013479e+00 9.265711e-01 1.053469e+00 1.546321e-02 7.330080e-02
2014 1.578628e-01 4.806665e+00 4.708307e-02 1.884630e-02 3.878253e-02
2015 6.454511e-02 1.728557e-01 6.463158e-02 3.626115e-01 9.353012e-02
2016 2.337972e+00 5.925810e-01 1.995100e-01 5.785447e-02 2.777856e-05
2017 4.113327e-01 9.985676e-04 1.409161e+00 6.557746e-02 1.487650e-02
2018 1.899106e-02 4.289023e-05 1.466559e-01 2.611568e-02 1.215868e-01
2019 2.477108e-02 3.634477e-03 8.300501e-04 6.743738e-02 1.517375e-01
2020 1.663938e-02 1.467006e-03 3.105993e-02 7.004251e-01 6.099263e-01
2021 6.864445e-02 3.979423e-04 1.797476e-01 2.335375e-01 1.752703e+00
              Jun          Jul          Aug          Sep          Oct
1994 3.447020e-02 3.005274e-01 2.312610e-02 2.419328e-01 2.452580e-02
1995 6.408050e-01 7.253964e-01 4.063560e-02 2.185617e-03 1.566772e-03
1996 1.532564e-01 7.598455e-02 8.791211e-01 1.949520e-01 4.744201e-02
1997 8.676976e-02 9.452531e-03 1.520567e-03 6.595357e-03 2.285296e-01
1998 5.261544e-01 1.341044e-01 4.885417e-03 1.946850e-01 2.619521e-02
1999 1.625383e-01 1.814838e-03 1.358283e+00 1.392537e-01 1.327628e+00
2000 1.676657e-01 9.176032e-02 2.634954e-01 6.896724e-01 1.062494e+00
2001 2.284835e-01 1.346964e-02 5.503878e-03 4.452187e-03 5.258144e-02
2002 1.059794e+00 1.662591e-01 2.408379e-01 6.601447e-02 1.118810e-03
2003 1.265695e+00 1.852076e-01 1.646482e+00 1.359100e-02 4.180992e-01
2004 6.777530e-01 2.257012e-01 4.544355e-02 2.805319e-02 3.392562e-01
2005 1.315076e-02 7.652890e-02 4.717843e-01 2.598223e-04 1.813930e-01
2006 3.971588e-01 6.120360e-01 1.653679e-02 8.984458e-01 1.272011e+00
2007 3.183082e-02 1.055047e+00 4.354756e-01 3.592285e-01 5.924966e-01
2008 5.984612e-01 4.746537e-04 1.500940e-01 3.994908e-01 1.080939e-01
2009 9.885582e-01 1.207483e-01 1.400866e-01 8.445440e-01 4.127721e-01
2010 2.895186e-01 1.184524e-03 1.087646e-02 6.765764e-03 6.230866e-01
2011 2.310692e-01 5.499352e-01 3.159716e-01 2.074062e-01 8.870591e-02
2012 2.552921e-01 6.584762e-02 2.511086e-01 1.646498e-01 3.142328e-02
2013 7.330873e-02 2.869306e-02 4.971568e-01 2.565666e-01 4.255661e-01
2014 3.181062e-03 1.131758e+00 6.604675e-01 2.051388e-01 4.191605e-01
2015 1.940263e-02 6.219102e-01 1.526798e-01 7.052038e-02 1.343312e-01
2016 2.969063e-03 2.288348e-01 7.900553e-02 5.630602e-01 6.820749e-02
2017 2.082753e-01 5.632729e-02 1.386050e-01 3.901150e-01 1.906632e-01
2018 2.207238e-01 6.627297e-01 4.084611e-01 4.817538e-02 1.031621e-01
2019 1.630594e-01 1.602105e-01 5.823222e-02 8.058727e-02 2.751699e-01
2020 5.503419e-01 9.694237e-03 1.611402e+00 1.703908e-01 1.983250e-02
2021 1.091478e-01 2.219856e-01 6.444600e-01                          
              Nov          Dec
1994 5.946214e-01 1.028440e+00
1995 2.163990e-01 6.922266e-01
1996 1.751961e-02 1.627554e-02
1997 1.576371e-01 4.597916e-01
1998 3.758264e-02 5.928953e-01
1999 2.396269e-01 1.370542e-03
2000 1.724204e-01 2.138946e-02
2001 1.135316e+00 8.051752e-01
2002 3.507218e-01 8.894975e-01
2003 9.225909e-01 2.275598e-01
2004 2.735507e-01 3.578905e-02
2005 1.255500e-01 1.304803e+00
2006 1.026188e-02 4.235256e+00
2007 4.002932e-01 4.156399e-01
2008 1.374739e+00 1.000343e+00
2009 1.512642e+00 1.333438e+00
2010 2.343172e+00 5.629604e-01
2011 3.065836e+00 1.172939e-01
2012 5.876230e-02 8.646243e-02
2013 5.251270e-02 1.683282e-01
2014 5.960548e-01 5.675809e-03
2015 2.007938e-01 5.001929e-01
2016 5.019279e-01 3.268619e-02
2017 2.919417e-03 7.992851e-03
2018 5.921426e-01 1.069491e-03
2019 7.215070e-05 3.155599e-01
2020 3.754193e-04 4.420621e-02
2021                           
 
 
Visualizamos los residuos.
par (mfrow =  c (2 ,1 )) 
plot (Errores_cuadrado)  
boxplot (Errores_cuadrado) 
 
Prueba de componente ARCH en el modelo 
 ModeloARCH1 =  ArchTest (D_Serie_plomo_boxCox, lags =  1 , demean =  TRUE ) 
 ModeloARCH1 
    ARCH LM-test; Null hypothesis: no ARCH effects
data:  D_Serie_plomo_boxCox
Chi-squared = 32.35, df = 1, p-value = 1.288e-08 
 
 
Concluímos la presencia de heterocedasticidad.
 ModeloARCH2 =  ArchTest (D_Serie_plomo_boxCox, lags =  2 , demean =  TRUE ) 
 ModeloARCH2 
    ARCH LM-test; Null hypothesis: no ARCH effects
data:  D_Serie_plomo_boxCox
Chi-squared = 34.804, df = 2, p-value = 2.77e-08 
 
 
Concluímos la presencia de heterocedasticidad.
 ModeloARCH3 =  ArchTest (D_Serie_plomo_boxCox, lags =  3 , demean =  TRUE ) 
 ModeloARCH3 
    ARCH LM-test; Null hypothesis: no ARCH effects
data:  D_Serie_plomo_boxCox
Chi-squared = 35.158, df = 3, p-value = 1.128e-07 
 
 
Concluímos la presencia de heterocedasticidad.
 ModeloARCH4 =  ArchTest (D_Serie_plomo_boxCox, lags =  4 , demean =  TRUE ) 
 ModeloARCH4 
    ARCH LM-test; Null hypothesis: no ARCH effects
data:  D_Serie_plomo_boxCox
Chi-squared = 37.411, df = 4, p-value = 1.482e-07 
 
 
Concluímos la presencia de heterocedasticidad.
En general, concluímos que la serie temporal del plomo presenta heterocedasticidad.
 
 
Estimación 
Plnateamiento del modelo ARCH / GARCH 
Tomamos como punto de partida a:
 ugarch0 =  ugarchspec () 
 ugarch0 
*---------------------------------*
*       GARCH Model Spec          *
*---------------------------------*
Conditional Variance Dynamics   
------------------------------------
GARCH Model     : sGARCH(1,1)
Variance Targeting  : FALSE 
Conditional Mean Dynamics
------------------------------------
Mean Model      : ARFIMA(1,0,1)
Include Mean        : TRUE 
GARCH-in-Mean       : FALSE 
Conditional Distribution
------------------------------------
Distribution    :  norm 
Includes Skew   :  FALSE 
Includes Shape  :  FALSE 
Includes Lambda :  FALSE  
 
 
Modelo GARCH (0,1)
 ugarch01 =  ugarchspec (mean.model =  list (armaOrder =  c (0 ,1 ))) 
 ugfit01 =  ugarchfit (spec =  ugarch01, data =  D_Serie_plomo_boxCox) 
 ugfit01 
*---------------------------------*
*          GARCH Model Fit        *
*---------------------------------*
Conditional Variance Dynamics   
-----------------------------------
GARCH Model : sGARCH(1,1)
Mean Model  : ARFIMA(0,0,1)
Distribution    : norm 
Optimal Parameters
------------------------------------
        Estimate  Std. Error  t value Pr(>|t|)
mu      0.009657    0.006217   1.5532  0.12038
ma1    -0.826875    0.026231 -31.5228  0.00000
omega   0.006634    0.007570   0.8764  0.38081
alpha1  0.025464    0.016137   1.5780  0.11456
beta1   0.958633    0.022998  41.6832  0.00000
Robust Standard Errors:
        Estimate  Std. Error  t value Pr(>|t|)
mu      0.009657    0.006011   1.6066 0.108147
ma1    -0.826875    0.017672 -46.7910 0.000000
omega   0.006634    0.005155   1.2870 0.198101
alpha1  0.025464    0.015097   1.6868 0.091651
beta1   0.958633    0.014491  66.1560 0.000000
LogLikelihood : -323.4115 
Information Criteria
------------------------------------
                   
Akaike       1.9844
Bayes        2.0418
Shibata      1.9839
Hannan-Quinn 2.0073
Weighted Ljung-Box Test on Standardized Residuals
------------------------------------
                        statistic   p-value
Lag[1]                      8.285 3.996e-03
Lag[2*(p+q)+(p+q)-1][2]     8.538 6.319e-08
Lag[4*(p+q)+(p+q)-1][5]    10.659 5.655e-04
d.o.f=1
H0 : No serial correlation
Weighted Ljung-Box Test on Standardized Squared Residuals
------------------------------------
                        statistic p-value
Lag[1]                    0.04123  0.8391
Lag[2*(p+q)+(p+q)-1][5]   0.84588  0.8935
Lag[4*(p+q)+(p+q)-1][9]   1.53999  0.9522
d.o.f=2
Weighted ARCH LM Tests
------------------------------------
            Statistic Shape Scale P-Value
ARCH Lag[3]    0.2293 0.500 2.000  0.6320
ARCH Lag[5]    1.5923 1.440 1.667  0.5684
ARCH Lag[7]    1.8783 2.315 1.543  0.7431
Nyblom stability test
------------------------------------
Joint Statistic:  0.9311
Individual Statistics:             
mu     0.1535
ma1    0.2354
omega  0.2405
alpha1 0.1672
beta1  0.2202
Asymptotic Critical Values (10% 5% 1%)
Joint Statistic:         1.28 1.47 1.88
Individual Statistic:    0.35 0.47 0.75
Sign Bias Test
------------------------------------
                   t-value   prob sig
Sign Bias           0.7345 0.4631    
Negative Sign Bias  0.1926 0.8474    
Positive Sign Bias  0.5729 0.5671    
Joint Effect        1.1290 0.7701    
Adjusted Pearson Goodness-of-Fit Test:
------------------------------------
  group statistic p-value(g-1)
1    20     25.44      0.14671
2    30     24.20      0.71919
3    40     53.89      0.05669
4    50     51.63      0.37145
Elapsed time : 0.09644699  
 
 
Modelo GARCH (0,2)
 ugarch02 =  ugarchspec (mean.model =  list (armaOrder =  c (0 ,2 ))) 
 ugfit02 =  ugarchfit (spec =  ugarch02, data =  D_Serie_plomo_boxCox) 
 ugfit02 
*---------------------------------*
*          GARCH Model Fit        *
*---------------------------------*
Conditional Variance Dynamics   
-----------------------------------
GARCH Model : sGARCH(1,1)
Mean Model  : ARFIMA(0,0,2)
Distribution    : norm 
Optimal Parameters
------------------------------------
        Estimate  Std. Error   t value Pr(>|t|)
mu      0.010060    0.007187   1.39974  0.16159
ma1    -0.994372    0.054167 -18.35756  0.00000
ma2     0.199573    0.053482   3.73156  0.00019
omega   0.006903    0.007457   0.92565  0.35463
alpha1  0.023320    0.015818   1.47425  0.14041
beta1   0.959672    0.023234  41.30393  0.00000
Robust Standard Errors:
        Estimate  Std. Error  t value Pr(>|t|)
mu      0.010060    0.006890   1.4600 0.144292
ma1    -0.994372    0.057946 -17.1602 0.000000
ma2     0.199573    0.054301   3.6753 0.000238
omega   0.006903    0.005238   1.3178 0.187565
alpha1  0.023320    0.014253   1.6361 0.101813
beta1   0.959672    0.015920  60.2820 0.000000
LogLikelihood : -317.0428 
Information Criteria
------------------------------------
                   
Akaike       1.9519
Bayes        2.0208
Shibata      1.9513
Hannan-Quinn 1.9794
Weighted Ljung-Box Test on Standardized Residuals
------------------------------------
                        statistic p-value
Lag[1]                    0.00522  0.9424
Lag[2*(p+q)+(p+q)-1][5]   0.63198  1.0000
Lag[4*(p+q)+(p+q)-1][9]   1.43287  0.9978
d.o.f=2
H0 : No serial correlation
Weighted Ljung-Box Test on Standardized Squared Residuals
------------------------------------
                        statistic p-value
Lag[1]                     0.2052  0.6505
Lag[2*(p+q)+(p+q)-1][5]    1.2548  0.7998
Lag[4*(p+q)+(p+q)-1][9]    2.7599  0.7979
d.o.f=2
Weighted ARCH LM Tests
------------------------------------
            Statistic Shape Scale P-Value
ARCH Lag[3]    0.0367 0.500 2.000  0.8481
ARCH Lag[5]    2.0805 1.440 1.667  0.4537
ARCH Lag[7]    3.1926 2.315 1.543  0.4780
Nyblom stability test
------------------------------------
Joint Statistic:  1.2068
Individual Statistics:              
mu     0.11081
ma1    0.32076
ma2    0.06215
omega  0.19118
alpha1 0.14871
beta1  0.17799
Asymptotic Critical Values (10% 5% 1%)
Joint Statistic:         1.49 1.68 2.12
Individual Statistic:    0.35 0.47 0.75
Sign Bias Test
------------------------------------
                   t-value    prob sig
Sign Bias            2.021 0.04411  **
Negative Sign Bias   1.093 0.27526    
Positive Sign Bias   1.137 0.25639    
Joint Effect         4.085 0.25246    
Adjusted Pearson Goodness-of-Fit Test:
------------------------------------
  group statistic p-value(g-1)
1    20     13.23       0.8266
2    30     27.82       0.5275
3    40     31.42       0.8009
4    50     33.20       0.9591
Elapsed time : 0.0791769  
 
 
Modelo GARCH (0,3)
 ugarch03 =  ugarchspec (mean.model =  list (armaOrder =  c (0 ,3 ))) 
 ugfit03 =  ugarchfit (spec =  ugarch03, data =  D_Serie_plomo_boxCox) 
 ugfit03 
*---------------------------------*
*          GARCH Model Fit        *
*---------------------------------*
Conditional Variance Dynamics   
-----------------------------------
GARCH Model : sGARCH(1,1)
Mean Model  : ARFIMA(0,0,3)
Distribution    : norm 
Optimal Parameters
------------------------------------
        Estimate  Std. Error   t value Pr(>|t|)
mu      0.009986    0.007130   1.40060 0.161335
ma1    -0.998133    0.057503 -17.35795 0.000000
ma2     0.213962    0.084785   2.52359 0.011616
ma3    -0.012619    0.056749  -0.22236 0.824034
omega   0.006962    0.007531   0.92453 0.355212
alpha1  0.023730    0.016111   1.47291 0.140774
beta1   0.959089    0.023501  40.81061 0.000000
Robust Standard Errors:
        Estimate  Std. Error  t value Pr(>|t|)
mu      0.009986    0.006895   1.4482 0.147554
ma1    -0.998133    0.059362 -16.8142 0.000000
ma2     0.213962    0.090169   2.3729 0.017649
ma3    -0.012619    0.060989  -0.2069 0.836086
omega   0.006962    0.005348   1.3018 0.192978
alpha1  0.023730    0.015266   1.5545 0.120067
beta1   0.959089    0.016655  57.5860 0.000000
LogLikelihood : -317.0596 
Information Criteria
------------------------------------
                   
Akaike       1.9581
Bayes        2.0385
Shibata      1.9572
Hannan-Quinn 1.9901
Weighted Ljung-Box Test on Standardized Residuals
------------------------------------
                         statistic p-value
Lag[1]                   0.0001023  0.9919
Lag[2*(p+q)+(p+q)-1][8]  1.2486126  1.0000
Lag[4*(p+q)+(p+q)-1][14] 4.0148393  0.9736
d.o.f=3
H0 : No serial correlation
Weighted Ljung-Box Test on Standardized Squared Residuals
------------------------------------
                        statistic p-value
Lag[1]                     0.1953  0.6585
Lag[2*(p+q)+(p+q)-1][5]    1.2253  0.8069
Lag[4*(p+q)+(p+q)-1][9]    2.7848  0.7939
d.o.f=2
Weighted ARCH LM Tests
------------------------------------
            Statistic Shape Scale P-Value
ARCH Lag[3]   0.02798 0.500 2.000  0.8671
ARCH Lag[5]   2.04544 1.440 1.667  0.4613
ARCH Lag[7]   3.23763 2.315 1.543  0.4699
Nyblom stability test
------------------------------------
Joint Statistic:  1.3755
Individual Statistics:              
mu     0.11278
ma1    0.31865
ma2    0.06431
ma3    0.14812
omega  0.19207
alpha1 0.14822
beta1  0.17747
Asymptotic Critical Values (10% 5% 1%)
Joint Statistic:         1.69 1.9 2.35
Individual Statistic:    0.35 0.47 0.75
Sign Bias Test
------------------------------------
                   t-value    prob sig
Sign Bias           1.8514 0.06501   *
Negative Sign Bias  0.9903 0.32277    
Positive Sign Bias  1.0592 0.29028    
Joint Effect        3.4282 0.33020    
Adjusted Pearson Goodness-of-Fit Test:
------------------------------------
  group statistic p-value(g-1)
1    20     14.44       0.7576
2    30     26.92       0.5763
3    40     40.84       0.3894
4    50     33.50       0.9555
Elapsed time : 0.1280332  
 
 
Modelo GARCH (0,4)
 ugarch04 =  ugarchspec (mean.model =  list (armaOrder =  c (0 ,4 ))) 
 ugfit04 =  ugarchfit (spec =  ugarch04, data =  D_Serie_plomo_boxCox) 
 ugfit04 
*---------------------------------*
*          GARCH Model Fit        *
*---------------------------------*
Conditional Variance Dynamics   
-----------------------------------
GARCH Model : sGARCH(1,1)
Mean Model  : ARFIMA(0,0,4)
Distribution    : norm 
Optimal Parameters
------------------------------------
        Estimate  Std. Error   t value Pr(>|t|)
mu      0.009932    0.006857   1.44848 0.147484
ma1    -0.992990    0.056461 -17.58706 0.000000
ma2     0.201948    0.080330   2.51399 0.011938
ma3     0.049616    0.078187   0.63458 0.525703
ma4    -0.063896    0.055766  -1.14579 0.251881
omega   0.006949    0.007670   0.90602 0.364928
alpha1  0.022488    0.016090   1.39759 0.162235
beta1   0.960239    0.023906  40.16755 0.000000
Robust Standard Errors:
        Estimate  Std. Error   t value Pr(>|t|)
mu      0.009932    0.006678   1.48734 0.136925
ma1    -0.992990    0.058311 -17.02927 0.000000
ma2     0.201948    0.086046   2.34697 0.018927
ma3     0.049616    0.079027   0.62784 0.530111
ma4    -0.063896    0.055635  -1.14849 0.250765
omega   0.006949    0.005384   1.29061 0.196839
alpha1  0.022488    0.015586   1.44282 0.149070
beta1   0.960239    0.016793  57.18020 0.000000
LogLikelihood : -316.4289 
Information Criteria
------------------------------------
                   
Akaike       1.9603
Bayes        2.0522
Shibata      1.9592
Hannan-Quinn 1.9969
Weighted Ljung-Box Test on Standardized Residuals
------------------------------------
                         statistic p-value
Lag[1]                    0.001635  0.9677
Lag[2*(p+q)+(p+q)-1][11]  1.301535  1.0000
Lag[4*(p+q)+(p+q)-1][19]  5.666099  0.9819
d.o.f=4
H0 : No serial correlation
Weighted Ljung-Box Test on Standardized Squared Residuals
------------------------------------
                        statistic p-value
Lag[1]                     0.1761  0.6747
Lag[2*(p+q)+(p+q)-1][5]    1.3297  0.7817
Lag[4*(p+q)+(p+q)-1][9]    2.9565  0.7661
d.o.f=2
Weighted ARCH LM Tests
------------------------------------
            Statistic Shape Scale P-Value
ARCH Lag[3]    0.1805 0.500 2.000  0.6710
ARCH Lag[5]    2.2894 1.440 1.667  0.4108
ARCH Lag[7]    3.4861 2.315 1.543  0.4267
Nyblom stability test
------------------------------------
Joint Statistic:  1.77
Individual Statistics:              
mu     0.12647
ma1    0.31704
ma2    0.06312
ma3    0.13194
ma4    0.35910
omega  0.20227
alpha1 0.15233
beta1  0.18671
Asymptotic Critical Values (10% 5% 1%)
Joint Statistic:         1.89 2.11 2.59
Individual Statistic:    0.35 0.47 0.75
Sign Bias Test
------------------------------------
                   t-value    prob sig
Sign Bias            2.203 0.02831  **
Negative Sign Bias   1.217 0.22458    
Positive Sign Bias   1.230 0.21977    
Joint Effect         4.853 0.18291    
Adjusted Pearson Goodness-of-Fit Test:
------------------------------------
  group statistic p-value(g-1)
1    20     16.13       0.6486
2    30     18.03       0.9436
3    40     35.28       0.6401
4    50     38.94       0.8478
Elapsed time : 0.156929  
 
 
Modelo GARCH (1,1)
 ugarch11 =  ugarchspec (mean.model =  list (armaOrder =  c (1 ,1 ))) 
 ugfit11 =  ugarchfit (spec =  ugarch11, data =  D_Serie_plomo_boxCox) 
 ugfit11 
*---------------------------------*
*          GARCH Model Fit        *
*---------------------------------*
Conditional Variance Dynamics   
-----------------------------------
GARCH Model : sGARCH(1,1)
Mean Model  : ARFIMA(1,0,1)
Distribution    : norm 
Optimal Parameters
------------------------------------
        Estimate  Std. Error   t value Pr(>|t|)
mu      0.009751    0.006818   1.43016 0.152671
ar1    -0.225950    0.063675  -3.54850 0.000387
ma1    -0.761593    0.040378 -18.86139 0.000000
omega   0.006686    0.007181   0.93112 0.351792
alpha1  0.025485    0.015938   1.59904 0.109812
beta1   0.958066    0.022668  42.26425 0.000000
Robust Standard Errors:
        Estimate  Std. Error  t value Pr(>|t|)
mu      0.009751    0.006571   1.4839 0.137836
ar1    -0.225950    0.060184  -3.7543 0.000174
ma1    -0.761593    0.032027 -23.7795 0.000000
omega   0.006686    0.005188   1.2888 0.197465
alpha1  0.025485    0.014365   1.7741 0.076053
beta1   0.958066    0.015800  60.6355 0.000000
LogLikelihood : -317.4172 
Information Criteria
------------------------------------
                   
Akaike       1.9542
Bayes        2.0231
Shibata      1.9535
Hannan-Quinn 1.9817
Weighted Ljung-Box Test on Standardized Residuals
------------------------------------
                        statistic p-value
Lag[1]                     0.0508  0.8217
Lag[2*(p+q)+(p+q)-1][5]    1.4665  0.9985
Lag[4*(p+q)+(p+q)-1][9]    2.3031  0.9677
d.o.f=2
H0 : No serial correlation
Weighted Ljung-Box Test on Standardized Squared Residuals
------------------------------------
                        statistic p-value
Lag[1]                     0.2032  0.6521
Lag[2*(p+q)+(p+q)-1][5]    1.1546  0.8238
Lag[4*(p+q)+(p+q)-1][9]    2.6946  0.8081
d.o.f=2
Weighted ARCH LM Tests
------------------------------------
            Statistic Shape Scale P-Value
ARCH Lag[3]   0.01337 0.500 2.000  0.9080
ARCH Lag[5]   1.90820 1.440 1.667  0.4919
ARCH Lag[7]   3.11174 2.315 1.543  0.4927
Nyblom stability test
------------------------------------
Joint Statistic:  1.0279
Individual Statistics:             
mu     0.1207
ar1    0.3345
ma1    0.3564
omega  0.1972
alpha1 0.1509
beta1  0.1811
Asymptotic Critical Values (10% 5% 1%)
Joint Statistic:         1.49 1.68 2.12
Individual Statistic:    0.35 0.47 0.75
Sign Bias Test
------------------------------------
                   t-value   prob sig
Sign Bias           0.8957 0.3711    
Negative Sign Bias  0.4881 0.6258    
Positive Sign Bias  0.4861 0.6272    
Joint Effect        0.8037 0.8486    
Adjusted Pearson Goodness-of-Fit Test:
------------------------------------
  group statistic p-value(g-1)
1    20     13.83       0.7933
2    30     22.38       0.8040
3    40     38.67       0.4849
4    50     43.47       0.6960
Elapsed time : 0.09967899  
 
 
Modelo GARCH (1,2)
 ugarch12 =  ugarchspec (mean.model =  list (armaOrder =  c (1 ,2 ))) 
 ugfit12 =  ugarchfit (spec =  ugarch12, data =  D_Serie_plomo_boxCox) 
 ugfit12 
*---------------------------------*
*          GARCH Model Fit        *
*---------------------------------*
Conditional Variance Dynamics   
-----------------------------------
GARCH Model : sGARCH(1,1)
Mean Model  : ARFIMA(1,0,2)
Distribution    : norm 
Optimal Parameters
------------------------------------
        Estimate  Std. Error  t value Pr(>|t|)
mu      0.010016    0.007150  1.40089 0.161248
ar1    -0.037757    0.217066 -0.17394 0.861909
ma1    -0.959073    0.211598 -4.53254 0.000006
ma2     0.170786    0.175976  0.97051 0.331793
omega   0.006887    0.007426  0.92742 0.353709
alpha1  0.023616    0.015930  1.48249 0.138209
beta1   0.959412    0.023210 41.33580 0.000000
Robust Standard Errors:
        Estimate  Std. Error  t value Pr(>|t|)
mu      0.010016    0.006884  1.45486  0.14571
ar1    -0.037757    0.180183 -0.20955  0.83402
ma1    -0.959073    0.186571 -5.14053  0.00000
ma2     0.170786    0.148025  1.15376  0.24860
omega   0.006887    0.005259  1.30959  0.19034
alpha1  0.023616    0.014707  1.60576  0.10833
beta1   0.959412    0.016189 59.26458  0.00000
LogLikelihood : -317.0279 
Information Criteria
------------------------------------
                   
Akaike       1.9579
Bayes        2.0383
Shibata      1.9570
Hannan-Quinn 1.9899
Weighted Ljung-Box Test on Standardized Residuals
------------------------------------
                         statistic p-value
Lag[1]                    0.001225  0.9721
Lag[2*(p+q)+(p+q)-1][8]   1.225885  1.0000
Lag[4*(p+q)+(p+q)-1][14]  3.987657  0.9748
d.o.f=3
H0 : No serial correlation
Weighted Ljung-Box Test on Standardized Squared Residuals
------------------------------------
                        statistic p-value
Lag[1]                     0.2014  0.6536
Lag[2*(p+q)+(p+q)-1][5]    1.2422  0.8029
Lag[4*(p+q)+(p+q)-1][9]    2.7800  0.7947
d.o.f=2
Weighted ARCH LM Tests
------------------------------------
            Statistic Shape Scale P-Value
ARCH Lag[3]    0.0323 0.500 2.000  0.8574
ARCH Lag[5]    2.0675 1.440 1.667  0.4565
ARCH Lag[7]    3.2241 2.315 1.543  0.4723
Nyblom stability test
------------------------------------
Joint Statistic:  1.3507
Individual Statistics:              
mu     0.11179
ar1    0.45415
ma1    0.33206
ma2    0.06465
omega  0.19151
alpha1 0.14876
beta1  0.17790
Asymptotic Critical Values (10% 5% 1%)
Joint Statistic:         1.69 1.9 2.35
Individual Statistic:    0.35 0.47 0.75
Sign Bias Test
------------------------------------
                   t-value   prob sig
Sign Bias           1.8345 0.0675   *
Negative Sign Bias  0.9783 0.3286    
Positive Sign Bias  1.0518 0.2937    
Joint Effect        3.3656 0.3386    
Adjusted Pearson Goodness-of-Fit Test:
------------------------------------
  group statistic p-value(g-1)
1    20     14.92       0.7276
2    30     26.37       0.6056
3    40     37.22       0.5514
4    50     37.43       0.8863
Elapsed time : 0.131995  
 
 
Modelo GARCH (1,3)
 ugarch13 =  ugarchspec (mean.model =  list (armaOrder =  c (1 ,3 ))) 
 ugfit13 =  ugarchfit (spec =  ugarch13, data =  D_Serie_plomo_boxCox) 
 ugfit13 
*---------------------------------*
*          GARCH Model Fit        *
*---------------------------------*
Conditional Variance Dynamics   
-----------------------------------
GARCH Model : sGARCH(1,1)
Mean Model  : ARFIMA(1,0,3)
Distribution    : norm 
Optimal Parameters
------------------------------------
        Estimate  Std. Error  t value Pr(>|t|)
mu      0.010347    0.007322  1.41303 0.157646
ar1    -0.845299    0.177174 -4.77102 0.000002
ma1    -0.139790    0.179874 -0.77715 0.437068
ma2    -0.665335    0.162677 -4.08991 0.000043
ma3     0.189409    0.055373  3.42062 0.000625
omega   0.007103    0.008057  0.88157 0.378008
alpha1  0.020880    0.016400  1.27314 0.202968
beta1   0.961545    0.025225 38.11927 0.000000
Robust Standard Errors:
        Estimate  Std. Error  t value Pr(>|t|)
mu      0.010347    0.007088   1.4599 0.144330
ar1    -0.845299    0.094567  -8.9387 0.000000
ma1    -0.139790    0.115530  -1.2100 0.226285
ma2    -0.665335    0.084815  -7.8446 0.000000
ma3     0.189409    0.051972   3.6444 0.000268
omega   0.007103    0.005488   1.2943 0.195560
alpha1  0.020880    0.016301   1.2809 0.200229
beta1   0.961545    0.017991  53.4471 0.000000
LogLikelihood : -316.7772 
Information Criteria
------------------------------------
                   
Akaike       1.9624
Bayes        2.0543
Shibata      1.9613
Hannan-Quinn 1.9991
Weighted Ljung-Box Test on Standardized Residuals
------------------------------------
                         statistic p-value
Lag[1]                     0.02783  0.8675
Lag[2*(p+q)+(p+q)-1][11]   1.68543  1.0000
Lag[4*(p+q)+(p+q)-1][19]   5.79123  0.9782
d.o.f=4
H0 : No serial correlation
Weighted Ljung-Box Test on Standardized Squared Residuals
------------------------------------
                        statistic p-value
Lag[1]                      0.173  0.6775
Lag[2*(p+q)+(p+q)-1][5]     1.341  0.7789
Lag[4*(p+q)+(p+q)-1][9]     2.739  0.8011
d.o.f=2
Weighted ARCH LM Tests
------------------------------------
            Statistic Shape Scale P-Value
ARCH Lag[3]   0.07763 0.500 2.000  0.7805
ARCH Lag[5]   2.27391 1.440 1.667  0.4138
ARCH Lag[7]   3.19721 2.315 1.543  0.4771
Nyblom stability test
------------------------------------
Joint Statistic:  1.7521
Individual Statistics:              
mu     0.11114
ar1    0.65376
ma1    0.86535
ma2    0.06299
ma3    0.22298
omega  0.19740
alpha1 0.15064
beta1  0.18425
Asymptotic Critical Values (10% 5% 1%)
Joint Statistic:         1.89 2.11 2.59
Individual Statistic:    0.35 0.47 0.75
Sign Bias Test
------------------------------------
                   t-value    prob sig
Sign Bias           1.8057 0.07189   *
Negative Sign Bias  0.9135 0.36166    
Positive Sign Bias  1.0711 0.28492    
Joint Effect        3.2671 0.35225    
Adjusted Pearson Goodness-of-Fit Test:
------------------------------------
  group statistic p-value(g-1)
1    20     15.65       0.6807
2    30     21.11       0.8549
3    40     44.47       0.2523
4    50     59.79       0.1390
Elapsed time : 0.133106  
 
 
Modelo GARCH (1,4)
 ugarch14 =  ugarchspec (mean.model =  list (armaOrder =  c (1 ,4 ))) 
 ugfit14 =  ugarchfit (spec =  ugarch14, data =  D_Serie_plomo_boxCox) 
 ugfit14 
*---------------------------------*
*          GARCH Model Fit        *
*---------------------------------*
Conditional Variance Dynamics   
-----------------------------------
GARCH Model : sGARCH(1,1)
Mean Model  : ARFIMA(1,0,4)
Distribution    : norm 
Optimal Parameters
------------------------------------
        Estimate  Std. Error  t value Pr(>|t|)
mu      0.010186    0.007067  1.44142  0.14947
ar1    -0.695216    0.929908 -0.74762  0.45469
ma1    -0.299613    0.934070 -0.32076  0.74839
ma2    -0.489851    0.921389 -0.53164  0.59497
ma3     0.186250    0.138820  1.34167  0.17970
ma4    -0.057204    0.085977 -0.66535  0.50583
omega   0.007056    0.008129  0.86790  0.38545
alpha1  0.021061    0.016512  1.27555  0.20211
beta1   0.961385    0.025428 37.80839  0.00000
Robust Standard Errors:
        Estimate  Std. Error  t value Pr(>|t|)
mu      0.010186    0.007027  1.44969  0.14714
ar1    -0.695216    2.393740 -0.29043  0.77149
ma1    -0.299613    2.413828 -0.12412  0.90122
ma2    -0.489851    2.378788 -0.20592  0.83685
ma3     0.186250    0.329677  0.56495  0.57211
ma4    -0.057204    0.173712 -0.32930  0.74193
omega   0.007056    0.005652  1.24824  0.21194
alpha1  0.021061    0.017016  1.23777  0.21580
beta1   0.961385    0.018732 51.32318  0.00000
LogLikelihood : -316.4512 
Information Criteria
------------------------------------
                   
Akaike       1.9665
Bayes        2.0699
Shibata      1.9650
Hannan-Quinn 2.0077
Weighted Ljung-Box Test on Standardized Residuals
------------------------------------
                         statistic p-value
Lag[1]                   0.0001623  0.9898
Lag[2*(p+q)+(p+q)-1][14] 3.0826708  1.0000
Lag[4*(p+q)+(p+q)-1][24] 7.9994739  0.9705
d.o.f=5
H0 : No serial correlation
Weighted Ljung-Box Test on Standardized Squared Residuals
------------------------------------
                        statistic p-value
Lag[1]                     0.1665  0.6832
Lag[2*(p+q)+(p+q)-1][5]    1.3046  0.7878
Lag[4*(p+q)+(p+q)-1][9]    2.8402  0.7850
d.o.f=2
Weighted ARCH LM Tests
------------------------------------
            Statistic Shape Scale P-Value
ARCH Lag[3]   0.09564 0.500 2.000  0.7571
ARCH Lag[5]   2.24045 1.440 1.667  0.4205
ARCH Lag[7]   3.36065 2.315 1.543  0.4482
Nyblom stability test
------------------------------------
Joint Statistic:  2.3943
Individual Statistics:              
mu     0.12112
ar1    0.57946
ma1    0.69639
ma2    0.02841
ma3    0.14808
ma4    0.56082
omega  0.20442
alpha1 0.15297
beta1  0.18833
Asymptotic Critical Values (10% 5% 1%)
Joint Statistic:         2.1 2.32 2.82
Individual Statistic:    0.35 0.47 0.75
Sign Bias Test
------------------------------------
                   t-value    prob sig
Sign Bias            2.554 0.01111  **
Negative Sign Bias   1.476 0.14078    
Positive Sign Bias   1.400 0.16246    
Joint Effect         6.523 0.08876   *
Adjusted Pearson Goodness-of-Fit Test:
------------------------------------
  group statistic p-value(g-1)
1    20     16.98       0.5915
2    30     27.82       0.5275
3    40     37.46       0.5402
4    50     43.47       0.6960
Elapsed time : 0.177067  
 
 
Modelo GARCH (2,1)
 ugarch21 =  ugarchspec (mean.model =  list (armaOrder =  c (2 ,1 ))) 
 ugfit21 =  ugarchfit (spec =  ugarch21, data =  D_Serie_plomo_boxCox) 
 ugfit21 
*---------------------------------*
*          GARCH Model Fit        *
*---------------------------------*
Conditional Variance Dynamics   
-----------------------------------
GARCH Model : sGARCH(1,1)
Mean Model  : ARFIMA(2,0,1)
Distribution    : norm 
Optimal Parameters
------------------------------------
        Estimate  Std. Error   t value Pr(>|t|)
mu      0.010511    0.007609   1.38134 0.167174
ar1    -0.293959    0.084594  -3.47495 0.000511
ar2    -0.101256    0.076193  -1.32894 0.183867
ma1    -0.698508    0.068083 -10.25972 0.000000
omega   0.007180    0.008009   0.89646 0.370006
alpha1  0.021131    0.016064   1.31542 0.188370
beta1   0.961075    0.024798  38.75665 0.000000
Robust Standard Errors:
        Estimate  Std. Error  t value Pr(>|t|)
mu      0.010511    0.007233   1.4533 0.146152
ar1    -0.293959    0.087315  -3.3666 0.000761
ar2    -0.101256    0.081690  -1.2395 0.215151
ma1    -0.698508    0.057143 -12.2238 0.000000
omega   0.007180    0.005485   1.3089 0.190556
alpha1  0.021131    0.015529   1.3607 0.173600
beta1   0.961075    0.017531  54.8205 0.000000
LogLikelihood : -317.6742 
Information Criteria
------------------------------------
                   
Akaike       1.9618
Bayes        2.0422
Shibata      1.9609
Hannan-Quinn 1.9938
Weighted Ljung-Box Test on Standardized Residuals
------------------------------------
                         statistic p-value
Lag[1]                   0.0004629  0.9828
Lag[2*(p+q)+(p+q)-1][8]  0.7796213  1.0000
Lag[4*(p+q)+(p+q)-1][14] 3.4857826  0.9905
d.o.f=3
H0 : No serial correlation
Weighted Ljung-Box Test on Standardized Squared Residuals
------------------------------------
                        statistic p-value
Lag[1]                     0.2403  0.6240
Lag[2*(p+q)+(p+q)-1][5]    1.3893  0.7671
Lag[4*(p+q)+(p+q)-1][9]    2.8927  0.7766
d.o.f=2
Weighted ARCH LM Tests
------------------------------------
            Statistic Shape Scale P-Value
ARCH Lag[3]    0.1036 0.500 2.000  0.7475
ARCH Lag[5]    2.2627 1.440 1.667  0.4160
ARCH Lag[7]    3.3196 2.315 1.543  0.4553
Nyblom stability test
------------------------------------
Joint Statistic:  1.0423
Individual Statistics:              
mu     0.10521
ar1    0.26764
ar2    0.09025
ma1    0.33217
omega  0.19383
alpha1 0.14957
beta1  0.18087
Asymptotic Critical Values (10% 5% 1%)
Joint Statistic:         1.69 1.9 2.35
Individual Statistic:    0.35 0.47 0.75
Sign Bias Test
------------------------------------
                   t-value    prob sig
Sign Bias            1.851 0.06514   *
Negative Sign Bias   1.023 0.30694    
Positive Sign Bias   1.066 0.28716    
Joint Effect         3.425 0.33058    
Adjusted Pearson Goodness-of-Fit Test:
------------------------------------
  group statistic p-value(g-1)
1    20     14.32       0.7649
2    30     24.92       0.6823
3    40     31.66       0.7919
4    50     33.80       0.9517
Elapsed time : 0.1504061  
 
 
Modelo GARCH (2,2)
 ugarch22 =  ugarchspec (mean.model =  list (armaOrder =  c (2 ,2 ))) 
 ugfit22 =  ugarchfit (spec =  ugarch22, data =  D_Serie_plomo_boxCox) 
 ugfit22 
*---------------------------------*
*          GARCH Model Fit        *
*---------------------------------*
Conditional Variance Dynamics   
-----------------------------------
GARCH Model : sGARCH(1,1)
Mean Model  : ARFIMA(2,0,2)
Distribution    : norm 
Optimal Parameters
------------------------------------
        Estimate  Std. Error  t value Pr(>|t|)
mu      0.010434    0.007355  1.41858 0.156021
ar1    -0.677456    0.469146 -1.44402 0.148733
ar2    -0.181261    0.104939 -1.72730 0.084114
ma1    -0.313505    0.472376 -0.66368 0.506897
ma2    -0.298671    0.372262 -0.80231 0.422373
omega   0.007044    0.008033  0.87687 0.380556
alpha1  0.020839    0.016192  1.28702 0.198088
beta1   0.961666    0.025094 38.32232 0.000000
Robust Standard Errors:
        Estimate  Std. Error  t value Pr(>|t|)
mu      0.010434    0.007069  1.47598 0.139950
ar1    -0.677456    0.361835 -1.87228 0.061168
ar2    -0.181261    0.075117 -2.41303 0.015820
ma1    -0.313505    0.377701 -0.83003 0.406519
ma2    -0.298671    0.297684 -1.00331 0.315709
omega   0.007044    0.005484  1.28456 0.198947
alpha1  0.020839    0.015981  1.30395 0.192251
beta1   0.961666    0.018076 53.20016 0.000000
LogLikelihood : -317.2459 
Information Criteria
------------------------------------
                   
Akaike       1.9652
Bayes        2.0571
Shibata      1.9641
Hannan-Quinn 2.0019
Weighted Ljung-Box Test on Standardized Residuals
------------------------------------
                         statistic p-value
Lag[1]                    0.001541  0.9687
Lag[2*(p+q)+(p+q)-1][11]  1.447172  1.0000
Lag[4*(p+q)+(p+q)-1][19]  5.565098  0.9845
d.o.f=4
H0 : No serial correlation
Weighted Ljung-Box Test on Standardized Squared Residuals
------------------------------------
                        statistic p-value
Lag[1]                     0.2443  0.6211
Lag[2*(p+q)+(p+q)-1][5]    1.4016  0.7641
Lag[4*(p+q)+(p+q)-1][9]    2.9202  0.7721
d.o.f=2
Weighted ARCH LM Tests
------------------------------------
            Statistic Shape Scale P-Value
ARCH Lag[3]    0.1159 0.500 2.000  0.7335
ARCH Lag[5]    2.2786 1.440 1.667  0.4129
ARCH Lag[7]    3.3624 2.315 1.543  0.4479
Nyblom stability test
------------------------------------
Joint Statistic:  1.7182
Individual Statistics:              
mu     0.11285
ar1    0.26945
ar2    0.07508
ma1    0.44421
ma2    0.04502
omega  0.20008
alpha1 0.15272
beta1  0.18584
Asymptotic Critical Values (10% 5% 1%)
Joint Statistic:         1.89 2.11 2.59
Individual Statistic:    0.35 0.47 0.75
Sign Bias Test
------------------------------------
                   t-value    prob sig
Sign Bias            2.125 0.03431  **
Negative Sign Bias   1.240 0.21598    
Positive Sign Bias   1.143 0.25404    
Joint Effect         4.522 0.21035    
Adjusted Pearson Goodness-of-Fit Test:
------------------------------------
  group statistic p-value(g-1)
1    20     16.37       0.6324
2    30     24.92       0.6823
3    40     31.42       0.8009
4    50     34.71       0.9388
Elapsed time : 0.1708441  
 
 
Modelo GARCH (2,3)
 ugarch23 =  ugarchspec (mean.model =  list (armaOrder =  c (2 ,3 ))) 
 ugfit23 =  ugarchfit (spec =  ugarch23, data =  D_Serie_plomo_boxCox) 
 ugfit23 
*---------------------------------*
*          GARCH Model Fit        *
*---------------------------------*
Conditional Variance Dynamics   
-----------------------------------
GARCH Model : sGARCH(1,1)
Mean Model  : ARFIMA(2,0,3)
Distribution    : norm 
Optimal Parameters
------------------------------------
        Estimate  Std. Error  t value Pr(>|t|)
mu      0.010182    0.006859  1.48455 0.137664
ar1     0.327643    0.185212  1.76901 0.076892
ar2    -0.662035    0.147796 -4.47939 0.000007
ma1    -1.286391    0.168931 -7.61489 0.000000
ma2     1.146133    0.250298  4.57907 0.000005
ma3    -0.601682    0.130058 -4.62627 0.000004
omega   0.007298    0.008448  0.86377 0.387715
alpha1  0.020709    0.016272  1.27263 0.203149
beta1   0.960832    0.025731 37.34088 0.000000
Robust Standard Errors:
        Estimate  Std. Error  t value Pr(>|t|)
mu      0.010182    0.006729   1.5131 0.130242
ar1     0.327643    0.222745   1.4709 0.141310
ar2    -0.662035    0.203244  -3.2573 0.001125
ma1    -1.286391    0.197606  -6.5099 0.000000
ma2     1.146133    0.347553   3.2977 0.000975
ma3    -0.601682    0.178842  -3.3643 0.000767
omega   0.007298    0.005900   1.2368 0.216147
alpha1  0.020709    0.015918   1.3009 0.193285
beta1   0.960832    0.017046  56.3674 0.000000
LogLikelihood : -316.8221 
Information Criteria
------------------------------------
                   
Akaike       1.9687
Bayes        2.0721
Shibata      1.9673
Hannan-Quinn 2.0099
Weighted Ljung-Box Test on Standardized Residuals
------------------------------------
                         statistic p-value
Lag[1]                      0.3275  0.5672
Lag[2*(p+q)+(p+q)-1][14]    3.7336  1.0000
Lag[4*(p+q)+(p+q)-1][24]    8.7711  0.9340
d.o.f=5
H0 : No serial correlation
Weighted Ljung-Box Test on Standardized Squared Residuals
------------------------------------
                        statistic p-value
Lag[1]                     0.0214  0.8837
Lag[2*(p+q)+(p+q)-1][5]    1.5697  0.7227
Lag[4*(p+q)+(p+q)-1][9]    3.4305  0.6863
d.o.f=2
Weighted ARCH LM Tests
------------------------------------
            Statistic Shape Scale P-Value
ARCH Lag[3]    0.5403 0.500 2.000  0.4623
ARCH Lag[5]    3.0908 1.440 1.667  0.2769
ARCH Lag[7]    4.2882 2.315 1.543  0.3069
Nyblom stability test
------------------------------------
Joint Statistic:  1.9038
Individual Statistics:              
mu     0.13580
ar1    0.11257
ar2    0.20693
ma1    0.25181
ma2    0.23450
ma3    0.06002
omega  0.21806
alpha1 0.15331
beta1  0.19999
Asymptotic Critical Values (10% 5% 1%)
Joint Statistic:         2.1 2.32 2.82
Individual Statistic:    0.35 0.47 0.75
Sign Bias Test
------------------------------------
                   t-value   prob sig
Sign Bias           1.6283 0.1044    
Negative Sign Bias  0.6426 0.5210    
Positive Sign Bias  1.2354 0.2176    
Joint Effect        2.9060 0.4063    
Adjusted Pearson Goodness-of-Fit Test:
------------------------------------
  group statistic p-value(g-1)
1    20     14.92       0.7276
2    30     27.10       0.5665
3    40     38.43       0.4959
4    50     47.10       0.5506
Elapsed time : 0.1782079  
 
 
Modelo GARCH (2,4)
 ugarch24 =  ugarchspec (mean.model =  list (armaOrder =  c (2 ,4 ))) 
 ugfit24 =  ugarchfit (spec =  ugarch24, data =  D_Serie_plomo_boxCox) 
 ugfit24 
*---------------------------------*
*          GARCH Model Fit        *
*---------------------------------*
Conditional Variance Dynamics   
-----------------------------------
GARCH Model : sGARCH(1,1)
Mean Model  : ARFIMA(2,0,4)
Distribution    : norm 
Optimal Parameters
------------------------------------
        Estimate  Std. Error    t value Pr(>|t|)
mu      0.009989    0.007261     1.3758  0.16889
ar1     0.755847    0.039504    19.1334  0.00000
ar2    -0.874435    0.037315   -23.4336  0.00000
ma1    -1.752885    0.001468 -1193.7879  0.00000
ma2     1.887314    0.000584  3230.8775  0.00000
ma3    -1.077209    0.026768   -40.2431  0.00000
ma4     0.174974    0.021961     7.9674  0.00000
omega   0.007865    0.008166     0.9632  0.33545
alpha1  0.022316    0.016110     1.3852  0.16599
beta1   0.957617    0.025511    37.5374  0.00000
Robust Standard Errors:
        Estimate  Std. Error    t value Pr(>|t|)
mu      0.009989    0.006933     1.4408  0.14965
ar1     0.755847    0.042403    17.8251  0.00000
ar2    -0.874435    0.037250   -23.4746  0.00000
ma1    -1.752885    0.001175 -1491.8900  0.00000
ma2     1.887314    0.000738  2556.1433  0.00000
ma3    -1.077209    0.026120   -41.2402  0.00000
ma4     0.174974    0.020168     8.6757  0.00000
omega   0.007865    0.006004     1.3101  0.19018
alpha1  0.022316    0.015660     1.4250  0.15416
beta1   0.957617    0.018207    52.5951  0.00000
LogLikelihood : -314.6303 
Information Criteria
------------------------------------
                   
Akaike       1.9615
Bayes        2.0764
Shibata      1.9598
Hannan-Quinn 2.0073
Weighted Ljung-Box Test on Standardized Residuals
------------------------------------
                         statistic p-value
Lag[1]                    0.000615  0.9802
Lag[2*(p+q)+(p+q)-1][17]  3.879752  1.0000
Lag[4*(p+q)+(p+q)-1][29] 10.006373  0.9715
d.o.f=6
H0 : No serial correlation
Weighted Ljung-Box Test on Standardized Squared Residuals
------------------------------------
                        statistic p-value
Lag[1]                    0.06964  0.7919
Lag[2*(p+q)+(p+q)-1][5]   1.28302  0.7930
Lag[4*(p+q)+(p+q)-1][9]   2.74459  0.8003
d.o.f=2
Weighted ARCH LM Tests
------------------------------------
            Statistic Shape Scale P-Value
ARCH Lag[3]   0.05843 0.500 2.000  0.8090
ARCH Lag[5]   2.33959 1.440 1.667  0.4010
ARCH Lag[7]   3.31734 2.315 1.543  0.4557
Nyblom stability test
------------------------------------
Joint Statistic:  1.7919
Individual Statistics:              
mu     0.11207
ar1    0.06687
ar2    0.06525
ma1    0.07417
ma2    0.06206
ma3    0.06885
ma4    0.10452
omega  0.17859
alpha1 0.13754
beta1  0.16406
Asymptotic Critical Values (10% 5% 1%)
Joint Statistic:         2.29 2.54 3.05
Individual Statistic:    0.35 0.47 0.75
Sign Bias Test
------------------------------------
                   t-value    prob sig
Sign Bias           1.6715 0.09558   *
Negative Sign Bias  0.8077 0.41986    
Positive Sign Bias  1.1762 0.24038    
Joint Effect        2.8750 0.41130    
Adjusted Pearson Goodness-of-Fit Test:
------------------------------------
  group statistic p-value(g-1)
1    20     16.13       0.6486
2    30     33.98       0.2398
3    40     39.88       0.4310
4    50     44.98       0.6367
Elapsed time : 0.20351  
 
 
Modelo GARCH (3,1)
 ugarch31 =  ugarchspec (mean.model =  list (armaOrder =  c (3 ,1 ))) 
 ugfit31 =  ugarchfit (spec =  ugarch31, data =  D_Serie_plomo_boxCox) 
 ugfit31 
*---------------------------------*
*          GARCH Model Fit        *
*---------------------------------*
Conditional Variance Dynamics   
-----------------------------------
GARCH Model : sGARCH(1,1)
Mean Model  : ARFIMA(3,0,1)
Distribution    : norm 
Optimal Parameters
------------------------------------
        Estimate  Std. Error   t value Pr(>|t|)
mu      0.009831    0.007114   1.38202 0.166966
ar1    -0.237161    0.096101  -2.46783 0.013593
ar2    -0.037521    0.095097  -0.39455 0.693173
ar3     0.060043    0.076529   0.78458 0.432700
ma1    -0.755241    0.074716 -10.10814 0.000000
omega   0.006904    0.007760   0.88962 0.373667
alpha1  0.021788    0.016081   1.35483 0.175473
beta1   0.961056    0.024249  39.63247 0.000000
Robust Standard Errors:
        Estimate  Std. Error   t value Pr(>|t|)
mu      0.009831    0.006873   1.43043 0.152592
ar1    -0.237161    0.097891  -2.42271 0.015405
ar2    -0.037521    0.100967  -0.37161 0.710181
ar3     0.060043    0.069660   0.86196 0.388713
ma1    -0.755241    0.060686 -12.44499 0.000000
omega   0.006904    0.005358   1.28842 0.197599
alpha1  0.021788    0.015812   1.37790 0.168235
beta1   0.961056    0.017370  55.32952 0.000000
LogLikelihood : -316.6729 
Information Criteria
------------------------------------
                   
Akaike       1.9618
Bayes        2.0537
Shibata      1.9606
Hannan-Quinn 1.9984
Weighted Ljung-Box Test on Standardized Residuals
------------------------------------
                         statistic p-value
Lag[1]                    0.002717  0.9584
Lag[2*(p+q)+(p+q)-1][11]  1.321887  1.0000
Lag[4*(p+q)+(p+q)-1][19]  5.506516  0.9859
d.o.f=4
H0 : No serial correlation
Weighted Ljung-Box Test on Standardized Squared Residuals
------------------------------------
                        statistic p-value
Lag[1]                     0.2138  0.6438
Lag[2*(p+q)+(p+q)-1][5]    1.3679  0.7723
Lag[4*(p+q)+(p+q)-1][9]    2.9671  0.7644
d.o.f=2
Weighted ARCH LM Tests
------------------------------------
            Statistic Shape Scale P-Value
ARCH Lag[3]    0.1394 0.500 2.000  0.7089
ARCH Lag[5]    2.2830 1.440 1.667  0.4120
ARCH Lag[7]    3.4629 2.315 1.543  0.4307
Nyblom stability test
------------------------------------
Joint Statistic:  1.9785
Individual Statistics:              
mu     0.11717
ar1    0.32459
ar2    0.08229
ar3    0.39508
ma1    0.32534
omega  0.20236
alpha1 0.15393
beta1  0.18699
Asymptotic Critical Values (10% 5% 1%)
Joint Statistic:         1.89 2.11 2.59
Individual Statistic:    0.35 0.47 0.75
Sign Bias Test
------------------------------------
                   t-value    prob sig
Sign Bias            2.531 0.01186  **
Negative Sign Bias   1.463 0.14437    
Positive Sign Bias   1.355 0.17641    
Joint Effect         6.408 0.09337   *
Adjusted Pearson Goodness-of-Fit Test:
------------------------------------
  group statistic p-value(g-1)
1    20     16.85       0.5997
2    30     24.20       0.7192
3    40     33.83       0.7042
4    50     41.36       0.7728
Elapsed time : 0.121119  
 
 
Modelo GARCH (3,2)
 ugarch32 =  ugarchspec (mean.model =  list (armaOrder =  c (3 ,2 ))) 
 ugfit32 =  ugarchfit (spec =  ugarch32, data =  D_Serie_plomo_boxCox) 
 ugfit32 
*---------------------------------*
*          GARCH Model Fit        *
*---------------------------------*
Conditional Variance Dynamics   
-----------------------------------
GARCH Model : sGARCH(1,1)
Mean Model  : ARFIMA(3,0,2)
Distribution    : norm 
Optimal Parameters
------------------------------------
        Estimate  Std. Error   t value Pr(>|t|)
mu      0.008950    0.006973    1.2834 0.199362
ar1     0.372878    0.055930    6.6668 0.000000
ar2     0.116392    0.063477    1.8336 0.066713
ar3     0.080350    0.063736    1.2607 0.207432
ma1    -1.373027    0.009566 -143.5268 0.000000
ma2     0.457797    0.006917   66.1821 0.000000
omega   0.006893    0.007456    0.9245 0.355226
alpha1  0.022881    0.016000    1.4301 0.152702
beta1   0.960092    0.023406   41.0184 0.000000
Robust Standard Errors:
        Estimate  Std. Error   t value Pr(>|t|)
mu      0.008950    0.006730    1.3298 0.183579
ar1     0.372878    0.059105    6.3087 0.000000
ar2     0.116392    0.064855    1.7946 0.072711
ar3     0.080350    0.059511    1.3502 0.176959
ma1    -1.373027    0.006561 -209.2797 0.000000
ma2     0.457797    0.004852   94.3527 0.000000
omega   0.006893    0.005235    1.3167 0.187941
alpha1  0.022881    0.015322    1.4933 0.135356
beta1   0.960092    0.016563   57.9661 0.000000
LogLikelihood : -316.2401 
Information Criteria
------------------------------------
                   
Akaike       1.9652
Bayes        2.0686
Shibata      1.9638
Hannan-Quinn 2.0064
Weighted Ljung-Box Test on Standardized Residuals
------------------------------------
                         statistic p-value
Lag[1]                   0.0005441  0.9814
Lag[2*(p+q)+(p+q)-1][14] 3.1748314  1.0000
Lag[4*(p+q)+(p+q)-1][24] 8.4258622  0.9529
d.o.f=5
H0 : No serial correlation
Weighted Ljung-Box Test on Standardized Squared Residuals
------------------------------------
                        statistic p-value
Lag[1]                     0.1799  0.6715
Lag[2*(p+q)+(p+q)-1][5]    1.3048  0.7877
Lag[4*(p+q)+(p+q)-1][9]    2.8247  0.7875
d.o.f=2
Weighted ARCH LM Tests
------------------------------------
            Statistic Shape Scale P-Value
ARCH Lag[3]    0.1063 0.500 2.000  0.7444
ARCH Lag[5]    2.2247 1.440 1.667  0.4237
ARCH Lag[7]    3.3163 2.315 1.543  0.4559
Nyblom stability test
------------------------------------
Joint Statistic:  1.8652
Individual Statistics:             
mu     0.1209
ar1    0.5124
ar2    0.1089
ar3    0.1084
ma1    0.1028
ma2    0.1088
omega  0.1944
alpha1 0.1506
beta1  0.1811
Asymptotic Critical Values (10% 5% 1%)
Joint Statistic:         2.1 2.32 2.82
Individual Statistic:    0.35 0.47 0.75
Sign Bias Test
------------------------------------
                   t-value   prob sig
Sign Bias            2.164 0.0312  **
Negative Sign Bias   1.210 0.2273    
Positive Sign Bias   1.240 0.2158    
Joint Effect         4.686 0.1963    
Adjusted Pearson Goodness-of-Fit Test:
------------------------------------
  group statistic p-value(g-1)
1    20     16.85       0.5997
2    30     27.64       0.5372
3    40     37.46       0.5402
4    50     51.33       0.3827
Elapsed time : 0.1440229  
 
 
Modelo GARCH (3,3)
 ugarch33 =  ugarchspec (mean.model =  list (armaOrder =  c (3 ,3 ))) 
 ugfit33 =  ugarchfit (spec =  ugarch33, data =  D_Serie_plomo_boxCox) 
Warning in arima(data, order = c(modelinc[2], 0, modelinc[3]), include.mean =
modelinc[1], : possible convergence problem: optim gave code = 1 
 
*---------------------------------*
*          GARCH Model Fit        *
*---------------------------------*
Conditional Variance Dynamics   
-----------------------------------
GARCH Model : sGARCH(1,1)
Mean Model  : ARFIMA(3,0,3)
Distribution    : norm 
Optimal Parameters
------------------------------------
        Estimate  Std. Error     t value Pr(>|t|)
mu      0.007646    0.000140    54.62758  0.00000
ar1     0.170414    0.000119  1435.98395  0.00000
ar2    -0.888152    0.000092 -9692.21943  0.00000
ar3    -0.147493    0.000090 -1636.69761  0.00000
ma1    -1.215910    0.000182 -6693.14455  0.00000
ma2     1.395152    0.000122 11423.98714  0.00000
ma3    -0.773084    0.000092 -8359.15899  0.00000
omega   0.007814    0.009716     0.80421  0.42128
alpha1  0.016873    0.011432     1.47598  0.13995
beta1   0.961803    0.013974    68.82895  0.00000
Robust Standard Errors:
        Estimate  Std. Error     t value Pr(>|t|)
mu      0.007646    0.000226    33.84649  0.00000
ar1     0.170414    0.001263   134.87946  0.00000
ar2    -0.888152    0.001166  -761.73752  0.00000
ar3    -0.147493    0.000932  -158.21625  0.00000
ma1    -1.215910    0.002157  -563.58784  0.00000
ma2     1.395152    0.001805   772.97047  0.00000
ma3    -0.773084    0.000433 -1785.67791  0.00000
omega   0.007814    0.034929     0.22370  0.82299
alpha1  0.016873    0.070900     0.23798  0.81189
beta1   0.961803    0.161358     5.96069  0.00000
LogLikelihood : -303.3641 
Information Criteria
------------------------------------
                   
Akaike       1.8934
Bayes        2.0083
Shibata      1.8917
Hannan-Quinn 1.9393
Weighted Ljung-Box Test on Standardized Residuals
------------------------------------
                         statistic p-value
Lag[1]                      0.2031  0.6522
Lag[2*(p+q)+(p+q)-1][17]    6.3861  1.0000
Lag[4*(p+q)+(p+q)-1][29]   13.9990  0.6141
d.o.f=6
H0 : No serial correlation
Weighted Ljung-Box Test on Standardized Squared Residuals
------------------------------------
                        statistic p-value
Lag[1]                   0.000421  0.9836
Lag[2*(p+q)+(p+q)-1][5]  1.877322  0.6477
Lag[4*(p+q)+(p+q)-1][9]  3.524780  0.6701
d.o.f=2
Weighted ARCH LM Tests
------------------------------------
            Statistic Shape Scale P-Value
ARCH Lag[3]     0.132 0.500 2.000  0.7164
ARCH Lag[5]     3.495 1.440 1.667  0.2256
ARCH Lag[7]     3.999 2.315 1.543  0.3468
Nyblom stability test
------------------------------------
Joint Statistic:  2.1823
Individual Statistics:               
mu     0.009463
ar1    0.084749
ar2    0.040388
ar3    0.127400
ma1    0.112359
ma2    0.025122
ma3    0.127944
omega  0.240478
alpha1 0.156217
beta1  0.235842
Asymptotic Critical Values (10% 5% 1%)
Joint Statistic:         2.29 2.54 3.05
Individual Statistic:    0.35 0.47 0.75
Sign Bias Test
------------------------------------
                   t-value   prob sig
Sign Bias          0.79369 0.4280    
Negative Sign Bias 0.07393 0.9411    
Positive Sign Bias 0.45202 0.6516    
Joint Effect       1.06756 0.7849    
Adjusted Pearson Goodness-of-Fit Test:
------------------------------------
  group statistic p-value(g-1)
1    20     25.31       0.1505
2    30     21.48       0.8412
3    40     40.36       0.4100
4    50     43.47       0.6960
Elapsed time : 0.4752219  
 
 
Modelo GARCH (3,4)
 ugarch34 =  ugarchspec (mean.model =  list (armaOrder =  c (3 ,4 ))) 
 ugfit34 =  ugarchfit (spec =  ugarch34, data =  D_Serie_plomo_boxCox) 
Warning in arima(data, order = c(modelinc[2], 0, modelinc[3]), include.mean =
modelinc[1], : possible convergence problem: optim gave code = 1 
 
*---------------------------------*
*          GARCH Model Fit        *
*---------------------------------*
Conditional Variance Dynamics   
-----------------------------------
GARCH Model : sGARCH(1,1)
Mean Model  : ARFIMA(3,0,4)
Distribution    : norm 
Optimal Parameters
------------------------------------
        Estimate  Std. Error     t value Pr(>|t|)
mu      0.008015    0.000079   101.50629  0.00000
ar1    -0.058561    0.000042 -1402.70621  0.00000
ar2    -0.808669    0.000095 -8471.40062  0.00000
ar3    -0.385453    0.000094 -4092.49264  0.00000
ma1    -0.998260    0.000157 -6367.08244  0.00000
ma2     1.097369    0.000143  7655.44604  0.00000
ma3    -0.456657    0.000090 -5064.26237  0.00000
ma4    -0.207323    0.000063 -3280.09611  0.00000
omega   0.006964    0.007469     0.93243  0.35112
alpha1  0.020134    0.018875     1.06671  0.28610
beta1   0.960539    0.018883    50.86845  0.00000
Robust Standard Errors:
        Estimate  Std. Error     t value Pr(>|t|)
mu      0.008015    0.000034   238.29797 0.000000
ar1    -0.058561    0.000303  -193.51751 0.000000
ar2    -0.808669    0.001139  -710.11115 0.000000
ar3    -0.385453    0.000165 -2336.75373 0.000000
ma1    -0.998260    0.001491  -669.52397 0.000000
ma2     1.097369    0.002044   536.92994 0.000000
ma3    -0.456657    0.000276 -1655.80388 0.000000
ma4    -0.207323    0.000516  -402.04624 0.000000
omega   0.006964    0.027471     0.25352 0.799865
alpha1  0.020134    0.183959     0.10945 0.912845
beta1   0.960539    0.253914     3.78293 0.000155
LogLikelihood : -300.8067 
Information Criteria
------------------------------------
                   
Akaike       1.8840
Bayes        2.0104
Shibata      1.8819
Hannan-Quinn 1.9344
Weighted Ljung-Box Test on Standardized Residuals
------------------------------------
                         statistic p-value
Lag[1]                      0.3109  0.5771
Lag[2*(p+q)+(p+q)-1][20]    6.7537  1.0000
Lag[4*(p+q)+(p+q)-1][34]   16.3545  0.6244
d.o.f=7
H0 : No serial correlation
Weighted Ljung-Box Test on Standardized Squared Residuals
------------------------------------
                        statistic p-value
Lag[1]                  0.0001802  0.9893
Lag[2*(p+q)+(p+q)-1][5] 1.8362757  0.6576
Lag[4*(p+q)+(p+q)-1][9] 3.6498050  0.6486
d.o.f=2
Weighted ARCH LM Tests
------------------------------------
            Statistic Shape Scale P-Value
ARCH Lag[3]     0.132 0.500 2.000  0.7164
ARCH Lag[5]     3.523 1.440 1.667  0.2224
ARCH Lag[7]     4.240 2.315 1.543  0.3133
Nyblom stability test
------------------------------------
Joint Statistic:  2.6224
Individual Statistics:               
mu     0.030452
ar1    0.098253
ar2    0.009115
ar3    0.078315
ma1    0.096031
ma2    0.010425
ma3    0.074367
ma4    0.053526
omega  0.239634
alpha1 0.160443
beta1  0.232196
Asymptotic Critical Values (10% 5% 1%)
Joint Statistic:         2.49 2.75 3.27
Individual Statistic:    0.35 0.47 0.75
Sign Bias Test
------------------------------------
                   t-value   prob sig
Sign Bias           0.5411 0.5888    
Negative Sign Bias  0.1697 0.8654    
Positive Sign Bias  0.3600 0.7191    
Joint Effect        0.6439 0.8863    
Adjusted Pearson Goodness-of-Fit Test:
------------------------------------
  group statistic p-value(g-1)
1    20     17.34      0.56696
2    30     33.80      0.24652
3    40     42.05      0.34018
4    50     66.13      0.05181
Elapsed time : 0.6751161  
 
 
Comparamos el criterio de Akaike de estos modelos y elegimos el de menor valor.
Modelo GARCH (0,1): 1.9844 Modelo GARCH (0,2): 1.9519 Modelo GARCH (0,3): 1.9581 Modelo GARCH (0,4): 1.9603 Modelo GARCH (1,1): 1.9542 Modelo GARCH (1,2): 1.9579 Modelo GARCH (1,3): 1.9624 Modelo GARCH (1,4): 1.9665 Modelo GARCH (2,1): 1.9618 Modelo GARCH (2,3): 1.9687 Modelo GARCH (2,4): 1.9615 Modelo GARCH (3,1): 1.9618 Modelo GARCH (3,2): 1.9652 Modelo GARCH (3,3): 1.8934 Modelo GARCH (3,4): 1.8840
El mejor modelo es un GARCH(3,4) con un Akaike igual a 1.8840.
 
 
Modelo estimado 
Para obtener la ecuación estimada de una serie temporal con un modelo ARIMA y un modelo GARCH, necesitamos combinar los componentes de cada modelo.
El modelo ARIMA(2,1,1)(2,0,0)[12] puede expresarse como:
\[[ (1 - \phi_1 B - \phi_2 B^2) (1 - B)^1 (y_t - \mu) = (1 + \theta_1 B) \varepsilon_t ]\] 
Donde: \(- ( \phi_1 ) y ( \phi_2 )\)  son los coeficientes autorregresivos. \(- ( \theta_1 )\)  es el coeficiente de la parte de media móvil. \(- ( B )\)  es el operador de rezago. \(- ( \mu )\)  es la media del proceso. \(- ( \varepsilon_t )\)  es el término de error.
Y el modelo GARCH(3,4) puede expresarse como:
\[[ \sigma_t^2 = \omega + \alpha*1* \varepsilon{t-1}^2 + \beta*1* \sigma{t-1}^2 + \alpha*2* \varepsilon{t-2}^2 + \beta*2* \sigma{t-2}^2 + \alpha*3* \varepsilon{t-3}^2 + \beta*3* \sigma{t-3}^2 + \alpha*4* \varepsilon{t-4}^2 ]\] 
Donde: \(- ( \omega )\)  es la constante. \(- ( \alpha\_i )\)  son los coeficientes de la parte ARCH. \(- ( \beta\_i )\)  son los coeficientes de la parte GARCH.