Identificación
Analizamos los residuos al cuadrado.
checkresiduals (modelo_auto)
Ljung-Box test
data: Residuals from ARIMA(2,1,1)(2,0,0)[12]
Q* = 21.437, df = 19, p-value = 0.3131
Model df: 5. Total lags used: 24
Errores_cuadrado = resid (modelo_auto)^ 2
Indicamos que sea una serie de tiempo.
Serie_Errores_cuadrado <- ts (Errores_cuadrado, start = c (1994 ,1 ), end = c (2021 ,8 ), frequency = 12 )
print (Serie_Errores_cuadrado)
Jan Feb Mar Apr May
1994 8.825083e-06 4.024444e-02 1.253395e-03 1.471864e-01 1.270564e+00
1995 6.614774e-02 2.688251e-01 6.949149e-01 4.105068e-02 2.376022e-01
1996 1.811964e-01 4.743478e-01 9.453873e-04 5.524046e-01 1.332695e-01
1997 3.345305e-01 3.765696e-01 4.551632e-02 1.711462e-01 9.295233e-04
1998 1.169296e+00 1.468641e-02 5.899657e-01 1.495268e-03 1.896942e-02
1999 1.566131e+00 3.207233e-01 9.348788e-05 9.809146e-02 2.722979e-01
2000 1.395422e-03 5.575112e-01 6.953595e-01 6.645878e-02 3.216144e-01
2001 2.825342e-01 4.661894e-02 4.999611e-02 1.698966e-01 8.888091e-04
2002 9.917972e-02 1.675313e-02 2.635208e-01 1.207040e-01 2.114733e-01
2003 1.879075e-03 1.612431e+00 2.808369e-01 6.975479e-02 1.041209e+00
2004 1.218799e+00 1.273448e+00 7.501892e-01 1.249055e+00 2.346700e-02
2005 4.860391e-01 9.000632e-01 2.446237e+00 6.232073e-02 1.636292e-02
2006 3.182225e-01 2.085195e-01 9.335448e-02 1.483562e+00 7.433158e-03
2007 4.195750e-03 3.324688e-01 1.633146e-01 3.797582e-03 1.739742e-01
2008 7.666534e-01 2.244157e-01 1.040309e-01 6.131235e-04 3.120516e-02
2009 2.048392e+00 1.214144e-02 1.281780e+00 8.426437e-02 8.861281e-01
2010 4.329416e-02 4.272663e-01 5.231308e-01 2.906261e-01 4.444931e-01
2011 3.291230e-03 1.746469e-01 5.526611e-04 8.543515e-01 1.661042e+00
2012 6.489195e-01 1.434283e+00 1.385947e-02 2.893160e-01 1.249121e-01
2013 2.013479e+00 9.265711e-01 1.053469e+00 1.546321e-02 7.330080e-02
2014 1.578628e-01 4.806665e+00 4.708307e-02 1.884630e-02 3.878253e-02
2015 6.454511e-02 1.728557e-01 6.463158e-02 3.626115e-01 9.353012e-02
2016 2.337972e+00 5.925810e-01 1.995100e-01 5.785447e-02 2.777856e-05
2017 4.113327e-01 9.985676e-04 1.409161e+00 6.557746e-02 1.487650e-02
2018 1.899106e-02 4.289023e-05 1.466559e-01 2.611568e-02 1.215868e-01
2019 2.477108e-02 3.634477e-03 8.300501e-04 6.743738e-02 1.517375e-01
2020 1.663938e-02 1.467006e-03 3.105993e-02 7.004251e-01 6.099263e-01
2021 6.864445e-02 3.979423e-04 1.797476e-01 2.335375e-01 1.752703e+00
Jun Jul Aug Sep Oct
1994 3.447020e-02 3.005274e-01 2.312610e-02 2.419328e-01 2.452580e-02
1995 6.408050e-01 7.253964e-01 4.063560e-02 2.185617e-03 1.566772e-03
1996 1.532564e-01 7.598455e-02 8.791211e-01 1.949520e-01 4.744201e-02
1997 8.676976e-02 9.452531e-03 1.520567e-03 6.595357e-03 2.285296e-01
1998 5.261544e-01 1.341044e-01 4.885417e-03 1.946850e-01 2.619521e-02
1999 1.625383e-01 1.814838e-03 1.358283e+00 1.392537e-01 1.327628e+00
2000 1.676657e-01 9.176032e-02 2.634954e-01 6.896724e-01 1.062494e+00
2001 2.284835e-01 1.346964e-02 5.503878e-03 4.452187e-03 5.258144e-02
2002 1.059794e+00 1.662591e-01 2.408379e-01 6.601447e-02 1.118810e-03
2003 1.265695e+00 1.852076e-01 1.646482e+00 1.359100e-02 4.180992e-01
2004 6.777530e-01 2.257012e-01 4.544355e-02 2.805319e-02 3.392562e-01
2005 1.315076e-02 7.652890e-02 4.717843e-01 2.598223e-04 1.813930e-01
2006 3.971588e-01 6.120360e-01 1.653679e-02 8.984458e-01 1.272011e+00
2007 3.183082e-02 1.055047e+00 4.354756e-01 3.592285e-01 5.924966e-01
2008 5.984612e-01 4.746537e-04 1.500940e-01 3.994908e-01 1.080939e-01
2009 9.885582e-01 1.207483e-01 1.400866e-01 8.445440e-01 4.127721e-01
2010 2.895186e-01 1.184524e-03 1.087646e-02 6.765764e-03 6.230866e-01
2011 2.310692e-01 5.499352e-01 3.159716e-01 2.074062e-01 8.870591e-02
2012 2.552921e-01 6.584762e-02 2.511086e-01 1.646498e-01 3.142328e-02
2013 7.330873e-02 2.869306e-02 4.971568e-01 2.565666e-01 4.255661e-01
2014 3.181062e-03 1.131758e+00 6.604675e-01 2.051388e-01 4.191605e-01
2015 1.940263e-02 6.219102e-01 1.526798e-01 7.052038e-02 1.343312e-01
2016 2.969063e-03 2.288348e-01 7.900553e-02 5.630602e-01 6.820749e-02
2017 2.082753e-01 5.632729e-02 1.386050e-01 3.901150e-01 1.906632e-01
2018 2.207238e-01 6.627297e-01 4.084611e-01 4.817538e-02 1.031621e-01
2019 1.630594e-01 1.602105e-01 5.823222e-02 8.058727e-02 2.751699e-01
2020 5.503419e-01 9.694237e-03 1.611402e+00 1.703908e-01 1.983250e-02
2021 1.091478e-01 2.219856e-01 6.444600e-01
Nov Dec
1994 5.946214e-01 1.028440e+00
1995 2.163990e-01 6.922266e-01
1996 1.751961e-02 1.627554e-02
1997 1.576371e-01 4.597916e-01
1998 3.758264e-02 5.928953e-01
1999 2.396269e-01 1.370542e-03
2000 1.724204e-01 2.138946e-02
2001 1.135316e+00 8.051752e-01
2002 3.507218e-01 8.894975e-01
2003 9.225909e-01 2.275598e-01
2004 2.735507e-01 3.578905e-02
2005 1.255500e-01 1.304803e+00
2006 1.026188e-02 4.235256e+00
2007 4.002932e-01 4.156399e-01
2008 1.374739e+00 1.000343e+00
2009 1.512642e+00 1.333438e+00
2010 2.343172e+00 5.629604e-01
2011 3.065836e+00 1.172939e-01
2012 5.876230e-02 8.646243e-02
2013 5.251270e-02 1.683282e-01
2014 5.960548e-01 5.675809e-03
2015 2.007938e-01 5.001929e-01
2016 5.019279e-01 3.268619e-02
2017 2.919417e-03 7.992851e-03
2018 5.921426e-01 1.069491e-03
2019 7.215070e-05 3.155599e-01
2020 3.754193e-04 4.420621e-02
2021
Visualizamos los residuos.
par (mfrow = c (2 ,1 ))
plot (Errores_cuadrado)
boxplot (Errores_cuadrado)
Prueba de componente ARCH en el modelo
ModeloARCH1 = ArchTest (D_Serie_plomo_boxCox, lags = 1 , demean = TRUE )
ModeloARCH1
ARCH LM-test; Null hypothesis: no ARCH effects
data: D_Serie_plomo_boxCox
Chi-squared = 32.35, df = 1, p-value = 1.288e-08
Concluímos la presencia de heterocedasticidad.
ModeloARCH2 = ArchTest (D_Serie_plomo_boxCox, lags = 2 , demean = TRUE )
ModeloARCH2
ARCH LM-test; Null hypothesis: no ARCH effects
data: D_Serie_plomo_boxCox
Chi-squared = 34.804, df = 2, p-value = 2.77e-08
Concluímos la presencia de heterocedasticidad.
ModeloARCH3 = ArchTest (D_Serie_plomo_boxCox, lags = 3 , demean = TRUE )
ModeloARCH3
ARCH LM-test; Null hypothesis: no ARCH effects
data: D_Serie_plomo_boxCox
Chi-squared = 35.158, df = 3, p-value = 1.128e-07
Concluímos la presencia de heterocedasticidad.
ModeloARCH4 = ArchTest (D_Serie_plomo_boxCox, lags = 4 , demean = TRUE )
ModeloARCH4
ARCH LM-test; Null hypothesis: no ARCH effects
data: D_Serie_plomo_boxCox
Chi-squared = 37.411, df = 4, p-value = 1.482e-07
Concluímos la presencia de heterocedasticidad.
En general, concluímos que la serie temporal del plomo presenta heterocedasticidad.
Estimación
Plnateamiento del modelo ARCH / GARCH
Tomamos como punto de partida a:
ugarch0 = ugarchspec ()
ugarch0
*---------------------------------*
* GARCH Model Spec *
*---------------------------------*
Conditional Variance Dynamics
------------------------------------
GARCH Model : sGARCH(1,1)
Variance Targeting : FALSE
Conditional Mean Dynamics
------------------------------------
Mean Model : ARFIMA(1,0,1)
Include Mean : TRUE
GARCH-in-Mean : FALSE
Conditional Distribution
------------------------------------
Distribution : norm
Includes Skew : FALSE
Includes Shape : FALSE
Includes Lambda : FALSE
Modelo GARCH (0,1)
ugarch01 = ugarchspec (mean.model = list (armaOrder = c (0 ,1 )))
ugfit01 = ugarchfit (spec = ugarch01, data = D_Serie_plomo_boxCox)
ugfit01
*---------------------------------*
* GARCH Model Fit *
*---------------------------------*
Conditional Variance Dynamics
-----------------------------------
GARCH Model : sGARCH(1,1)
Mean Model : ARFIMA(0,0,1)
Distribution : norm
Optimal Parameters
------------------------------------
Estimate Std. Error t value Pr(>|t|)
mu 0.009657 0.006217 1.5532 0.12038
ma1 -0.826875 0.026231 -31.5228 0.00000
omega 0.006634 0.007570 0.8764 0.38081
alpha1 0.025464 0.016137 1.5780 0.11456
beta1 0.958633 0.022998 41.6832 0.00000
Robust Standard Errors:
Estimate Std. Error t value Pr(>|t|)
mu 0.009657 0.006011 1.6066 0.108147
ma1 -0.826875 0.017672 -46.7910 0.000000
omega 0.006634 0.005155 1.2870 0.198101
alpha1 0.025464 0.015097 1.6868 0.091651
beta1 0.958633 0.014491 66.1560 0.000000
LogLikelihood : -323.4115
Information Criteria
------------------------------------
Akaike 1.9844
Bayes 2.0418
Shibata 1.9839
Hannan-Quinn 2.0073
Weighted Ljung-Box Test on Standardized Residuals
------------------------------------
statistic p-value
Lag[1] 8.285 3.996e-03
Lag[2*(p+q)+(p+q)-1][2] 8.538 6.319e-08
Lag[4*(p+q)+(p+q)-1][5] 10.659 5.655e-04
d.o.f=1
H0 : No serial correlation
Weighted Ljung-Box Test on Standardized Squared Residuals
------------------------------------
statistic p-value
Lag[1] 0.04123 0.8391
Lag[2*(p+q)+(p+q)-1][5] 0.84588 0.8935
Lag[4*(p+q)+(p+q)-1][9] 1.53999 0.9522
d.o.f=2
Weighted ARCH LM Tests
------------------------------------
Statistic Shape Scale P-Value
ARCH Lag[3] 0.2293 0.500 2.000 0.6320
ARCH Lag[5] 1.5923 1.440 1.667 0.5684
ARCH Lag[7] 1.8783 2.315 1.543 0.7431
Nyblom stability test
------------------------------------
Joint Statistic: 0.9311
Individual Statistics:
mu 0.1535
ma1 0.2354
omega 0.2405
alpha1 0.1672
beta1 0.2202
Asymptotic Critical Values (10% 5% 1%)
Joint Statistic: 1.28 1.47 1.88
Individual Statistic: 0.35 0.47 0.75
Sign Bias Test
------------------------------------
t-value prob sig
Sign Bias 0.7345 0.4631
Negative Sign Bias 0.1926 0.8474
Positive Sign Bias 0.5729 0.5671
Joint Effect 1.1290 0.7701
Adjusted Pearson Goodness-of-Fit Test:
------------------------------------
group statistic p-value(g-1)
1 20 25.44 0.14671
2 30 24.20 0.71919
3 40 53.89 0.05669
4 50 51.63 0.37145
Elapsed time : 0.09644699
Modelo GARCH (0,2)
ugarch02 = ugarchspec (mean.model = list (armaOrder = c (0 ,2 )))
ugfit02 = ugarchfit (spec = ugarch02, data = D_Serie_plomo_boxCox)
ugfit02
*---------------------------------*
* GARCH Model Fit *
*---------------------------------*
Conditional Variance Dynamics
-----------------------------------
GARCH Model : sGARCH(1,1)
Mean Model : ARFIMA(0,0,2)
Distribution : norm
Optimal Parameters
------------------------------------
Estimate Std. Error t value Pr(>|t|)
mu 0.010060 0.007187 1.39974 0.16159
ma1 -0.994372 0.054167 -18.35756 0.00000
ma2 0.199573 0.053482 3.73156 0.00019
omega 0.006903 0.007457 0.92565 0.35463
alpha1 0.023320 0.015818 1.47425 0.14041
beta1 0.959672 0.023234 41.30393 0.00000
Robust Standard Errors:
Estimate Std. Error t value Pr(>|t|)
mu 0.010060 0.006890 1.4600 0.144292
ma1 -0.994372 0.057946 -17.1602 0.000000
ma2 0.199573 0.054301 3.6753 0.000238
omega 0.006903 0.005238 1.3178 0.187565
alpha1 0.023320 0.014253 1.6361 0.101813
beta1 0.959672 0.015920 60.2820 0.000000
LogLikelihood : -317.0428
Information Criteria
------------------------------------
Akaike 1.9519
Bayes 2.0208
Shibata 1.9513
Hannan-Quinn 1.9794
Weighted Ljung-Box Test on Standardized Residuals
------------------------------------
statistic p-value
Lag[1] 0.00522 0.9424
Lag[2*(p+q)+(p+q)-1][5] 0.63198 1.0000
Lag[4*(p+q)+(p+q)-1][9] 1.43287 0.9978
d.o.f=2
H0 : No serial correlation
Weighted Ljung-Box Test on Standardized Squared Residuals
------------------------------------
statistic p-value
Lag[1] 0.2052 0.6505
Lag[2*(p+q)+(p+q)-1][5] 1.2548 0.7998
Lag[4*(p+q)+(p+q)-1][9] 2.7599 0.7979
d.o.f=2
Weighted ARCH LM Tests
------------------------------------
Statistic Shape Scale P-Value
ARCH Lag[3] 0.0367 0.500 2.000 0.8481
ARCH Lag[5] 2.0805 1.440 1.667 0.4537
ARCH Lag[7] 3.1926 2.315 1.543 0.4780
Nyblom stability test
------------------------------------
Joint Statistic: 1.2068
Individual Statistics:
mu 0.11081
ma1 0.32076
ma2 0.06215
omega 0.19118
alpha1 0.14871
beta1 0.17799
Asymptotic Critical Values (10% 5% 1%)
Joint Statistic: 1.49 1.68 2.12
Individual Statistic: 0.35 0.47 0.75
Sign Bias Test
------------------------------------
t-value prob sig
Sign Bias 2.021 0.04411 **
Negative Sign Bias 1.093 0.27526
Positive Sign Bias 1.137 0.25639
Joint Effect 4.085 0.25246
Adjusted Pearson Goodness-of-Fit Test:
------------------------------------
group statistic p-value(g-1)
1 20 13.23 0.8266
2 30 27.82 0.5275
3 40 31.42 0.8009
4 50 33.20 0.9591
Elapsed time : 0.0791769
Modelo GARCH (0,3)
ugarch03 = ugarchspec (mean.model = list (armaOrder = c (0 ,3 )))
ugfit03 = ugarchfit (spec = ugarch03, data = D_Serie_plomo_boxCox)
ugfit03
*---------------------------------*
* GARCH Model Fit *
*---------------------------------*
Conditional Variance Dynamics
-----------------------------------
GARCH Model : sGARCH(1,1)
Mean Model : ARFIMA(0,0,3)
Distribution : norm
Optimal Parameters
------------------------------------
Estimate Std. Error t value Pr(>|t|)
mu 0.009986 0.007130 1.40060 0.161335
ma1 -0.998133 0.057503 -17.35795 0.000000
ma2 0.213962 0.084785 2.52359 0.011616
ma3 -0.012619 0.056749 -0.22236 0.824034
omega 0.006962 0.007531 0.92453 0.355212
alpha1 0.023730 0.016111 1.47291 0.140774
beta1 0.959089 0.023501 40.81061 0.000000
Robust Standard Errors:
Estimate Std. Error t value Pr(>|t|)
mu 0.009986 0.006895 1.4482 0.147554
ma1 -0.998133 0.059362 -16.8142 0.000000
ma2 0.213962 0.090169 2.3729 0.017649
ma3 -0.012619 0.060989 -0.2069 0.836086
omega 0.006962 0.005348 1.3018 0.192978
alpha1 0.023730 0.015266 1.5545 0.120067
beta1 0.959089 0.016655 57.5860 0.000000
LogLikelihood : -317.0596
Information Criteria
------------------------------------
Akaike 1.9581
Bayes 2.0385
Shibata 1.9572
Hannan-Quinn 1.9901
Weighted Ljung-Box Test on Standardized Residuals
------------------------------------
statistic p-value
Lag[1] 0.0001023 0.9919
Lag[2*(p+q)+(p+q)-1][8] 1.2486126 1.0000
Lag[4*(p+q)+(p+q)-1][14] 4.0148393 0.9736
d.o.f=3
H0 : No serial correlation
Weighted Ljung-Box Test on Standardized Squared Residuals
------------------------------------
statistic p-value
Lag[1] 0.1953 0.6585
Lag[2*(p+q)+(p+q)-1][5] 1.2253 0.8069
Lag[4*(p+q)+(p+q)-1][9] 2.7848 0.7939
d.o.f=2
Weighted ARCH LM Tests
------------------------------------
Statistic Shape Scale P-Value
ARCH Lag[3] 0.02798 0.500 2.000 0.8671
ARCH Lag[5] 2.04544 1.440 1.667 0.4613
ARCH Lag[7] 3.23763 2.315 1.543 0.4699
Nyblom stability test
------------------------------------
Joint Statistic: 1.3755
Individual Statistics:
mu 0.11278
ma1 0.31865
ma2 0.06431
ma3 0.14812
omega 0.19207
alpha1 0.14822
beta1 0.17747
Asymptotic Critical Values (10% 5% 1%)
Joint Statistic: 1.69 1.9 2.35
Individual Statistic: 0.35 0.47 0.75
Sign Bias Test
------------------------------------
t-value prob sig
Sign Bias 1.8514 0.06501 *
Negative Sign Bias 0.9903 0.32277
Positive Sign Bias 1.0592 0.29028
Joint Effect 3.4282 0.33020
Adjusted Pearson Goodness-of-Fit Test:
------------------------------------
group statistic p-value(g-1)
1 20 14.44 0.7576
2 30 26.92 0.5763
3 40 40.84 0.3894
4 50 33.50 0.9555
Elapsed time : 0.1280332
Modelo GARCH (0,4)
ugarch04 = ugarchspec (mean.model = list (armaOrder = c (0 ,4 )))
ugfit04 = ugarchfit (spec = ugarch04, data = D_Serie_plomo_boxCox)
ugfit04
*---------------------------------*
* GARCH Model Fit *
*---------------------------------*
Conditional Variance Dynamics
-----------------------------------
GARCH Model : sGARCH(1,1)
Mean Model : ARFIMA(0,0,4)
Distribution : norm
Optimal Parameters
------------------------------------
Estimate Std. Error t value Pr(>|t|)
mu 0.009932 0.006857 1.44848 0.147484
ma1 -0.992990 0.056461 -17.58706 0.000000
ma2 0.201948 0.080330 2.51399 0.011938
ma3 0.049616 0.078187 0.63458 0.525703
ma4 -0.063896 0.055766 -1.14579 0.251881
omega 0.006949 0.007670 0.90602 0.364928
alpha1 0.022488 0.016090 1.39759 0.162235
beta1 0.960239 0.023906 40.16755 0.000000
Robust Standard Errors:
Estimate Std. Error t value Pr(>|t|)
mu 0.009932 0.006678 1.48734 0.136925
ma1 -0.992990 0.058311 -17.02927 0.000000
ma2 0.201948 0.086046 2.34697 0.018927
ma3 0.049616 0.079027 0.62784 0.530111
ma4 -0.063896 0.055635 -1.14849 0.250765
omega 0.006949 0.005384 1.29061 0.196839
alpha1 0.022488 0.015586 1.44282 0.149070
beta1 0.960239 0.016793 57.18020 0.000000
LogLikelihood : -316.4289
Information Criteria
------------------------------------
Akaike 1.9603
Bayes 2.0522
Shibata 1.9592
Hannan-Quinn 1.9969
Weighted Ljung-Box Test on Standardized Residuals
------------------------------------
statistic p-value
Lag[1] 0.001635 0.9677
Lag[2*(p+q)+(p+q)-1][11] 1.301535 1.0000
Lag[4*(p+q)+(p+q)-1][19] 5.666099 0.9819
d.o.f=4
H0 : No serial correlation
Weighted Ljung-Box Test on Standardized Squared Residuals
------------------------------------
statistic p-value
Lag[1] 0.1761 0.6747
Lag[2*(p+q)+(p+q)-1][5] 1.3297 0.7817
Lag[4*(p+q)+(p+q)-1][9] 2.9565 0.7661
d.o.f=2
Weighted ARCH LM Tests
------------------------------------
Statistic Shape Scale P-Value
ARCH Lag[3] 0.1805 0.500 2.000 0.6710
ARCH Lag[5] 2.2894 1.440 1.667 0.4108
ARCH Lag[7] 3.4861 2.315 1.543 0.4267
Nyblom stability test
------------------------------------
Joint Statistic: 1.77
Individual Statistics:
mu 0.12647
ma1 0.31704
ma2 0.06312
ma3 0.13194
ma4 0.35910
omega 0.20227
alpha1 0.15233
beta1 0.18671
Asymptotic Critical Values (10% 5% 1%)
Joint Statistic: 1.89 2.11 2.59
Individual Statistic: 0.35 0.47 0.75
Sign Bias Test
------------------------------------
t-value prob sig
Sign Bias 2.203 0.02831 **
Negative Sign Bias 1.217 0.22458
Positive Sign Bias 1.230 0.21977
Joint Effect 4.853 0.18291
Adjusted Pearson Goodness-of-Fit Test:
------------------------------------
group statistic p-value(g-1)
1 20 16.13 0.6486
2 30 18.03 0.9436
3 40 35.28 0.6401
4 50 38.94 0.8478
Elapsed time : 0.156929
Modelo GARCH (1,1)
ugarch11 = ugarchspec (mean.model = list (armaOrder = c (1 ,1 )))
ugfit11 = ugarchfit (spec = ugarch11, data = D_Serie_plomo_boxCox)
ugfit11
*---------------------------------*
* GARCH Model Fit *
*---------------------------------*
Conditional Variance Dynamics
-----------------------------------
GARCH Model : sGARCH(1,1)
Mean Model : ARFIMA(1,0,1)
Distribution : norm
Optimal Parameters
------------------------------------
Estimate Std. Error t value Pr(>|t|)
mu 0.009751 0.006818 1.43016 0.152671
ar1 -0.225950 0.063675 -3.54850 0.000387
ma1 -0.761593 0.040378 -18.86139 0.000000
omega 0.006686 0.007181 0.93112 0.351792
alpha1 0.025485 0.015938 1.59904 0.109812
beta1 0.958066 0.022668 42.26425 0.000000
Robust Standard Errors:
Estimate Std. Error t value Pr(>|t|)
mu 0.009751 0.006571 1.4839 0.137836
ar1 -0.225950 0.060184 -3.7543 0.000174
ma1 -0.761593 0.032027 -23.7795 0.000000
omega 0.006686 0.005188 1.2888 0.197465
alpha1 0.025485 0.014365 1.7741 0.076053
beta1 0.958066 0.015800 60.6355 0.000000
LogLikelihood : -317.4172
Information Criteria
------------------------------------
Akaike 1.9542
Bayes 2.0231
Shibata 1.9535
Hannan-Quinn 1.9817
Weighted Ljung-Box Test on Standardized Residuals
------------------------------------
statistic p-value
Lag[1] 0.0508 0.8217
Lag[2*(p+q)+(p+q)-1][5] 1.4665 0.9985
Lag[4*(p+q)+(p+q)-1][9] 2.3031 0.9677
d.o.f=2
H0 : No serial correlation
Weighted Ljung-Box Test on Standardized Squared Residuals
------------------------------------
statistic p-value
Lag[1] 0.2032 0.6521
Lag[2*(p+q)+(p+q)-1][5] 1.1546 0.8238
Lag[4*(p+q)+(p+q)-1][9] 2.6946 0.8081
d.o.f=2
Weighted ARCH LM Tests
------------------------------------
Statistic Shape Scale P-Value
ARCH Lag[3] 0.01337 0.500 2.000 0.9080
ARCH Lag[5] 1.90820 1.440 1.667 0.4919
ARCH Lag[7] 3.11174 2.315 1.543 0.4927
Nyblom stability test
------------------------------------
Joint Statistic: 1.0279
Individual Statistics:
mu 0.1207
ar1 0.3345
ma1 0.3564
omega 0.1972
alpha1 0.1509
beta1 0.1811
Asymptotic Critical Values (10% 5% 1%)
Joint Statistic: 1.49 1.68 2.12
Individual Statistic: 0.35 0.47 0.75
Sign Bias Test
------------------------------------
t-value prob sig
Sign Bias 0.8957 0.3711
Negative Sign Bias 0.4881 0.6258
Positive Sign Bias 0.4861 0.6272
Joint Effect 0.8037 0.8486
Adjusted Pearson Goodness-of-Fit Test:
------------------------------------
group statistic p-value(g-1)
1 20 13.83 0.7933
2 30 22.38 0.8040
3 40 38.67 0.4849
4 50 43.47 0.6960
Elapsed time : 0.09967899
Modelo GARCH (1,2)
ugarch12 = ugarchspec (mean.model = list (armaOrder = c (1 ,2 )))
ugfit12 = ugarchfit (spec = ugarch12, data = D_Serie_plomo_boxCox)
ugfit12
*---------------------------------*
* GARCH Model Fit *
*---------------------------------*
Conditional Variance Dynamics
-----------------------------------
GARCH Model : sGARCH(1,1)
Mean Model : ARFIMA(1,0,2)
Distribution : norm
Optimal Parameters
------------------------------------
Estimate Std. Error t value Pr(>|t|)
mu 0.010016 0.007150 1.40089 0.161248
ar1 -0.037757 0.217066 -0.17394 0.861909
ma1 -0.959073 0.211598 -4.53254 0.000006
ma2 0.170786 0.175976 0.97051 0.331793
omega 0.006887 0.007426 0.92742 0.353709
alpha1 0.023616 0.015930 1.48249 0.138209
beta1 0.959412 0.023210 41.33580 0.000000
Robust Standard Errors:
Estimate Std. Error t value Pr(>|t|)
mu 0.010016 0.006884 1.45486 0.14571
ar1 -0.037757 0.180183 -0.20955 0.83402
ma1 -0.959073 0.186571 -5.14053 0.00000
ma2 0.170786 0.148025 1.15376 0.24860
omega 0.006887 0.005259 1.30959 0.19034
alpha1 0.023616 0.014707 1.60576 0.10833
beta1 0.959412 0.016189 59.26458 0.00000
LogLikelihood : -317.0279
Information Criteria
------------------------------------
Akaike 1.9579
Bayes 2.0383
Shibata 1.9570
Hannan-Quinn 1.9899
Weighted Ljung-Box Test on Standardized Residuals
------------------------------------
statistic p-value
Lag[1] 0.001225 0.9721
Lag[2*(p+q)+(p+q)-1][8] 1.225885 1.0000
Lag[4*(p+q)+(p+q)-1][14] 3.987657 0.9748
d.o.f=3
H0 : No serial correlation
Weighted Ljung-Box Test on Standardized Squared Residuals
------------------------------------
statistic p-value
Lag[1] 0.2014 0.6536
Lag[2*(p+q)+(p+q)-1][5] 1.2422 0.8029
Lag[4*(p+q)+(p+q)-1][9] 2.7800 0.7947
d.o.f=2
Weighted ARCH LM Tests
------------------------------------
Statistic Shape Scale P-Value
ARCH Lag[3] 0.0323 0.500 2.000 0.8574
ARCH Lag[5] 2.0675 1.440 1.667 0.4565
ARCH Lag[7] 3.2241 2.315 1.543 0.4723
Nyblom stability test
------------------------------------
Joint Statistic: 1.3507
Individual Statistics:
mu 0.11179
ar1 0.45415
ma1 0.33206
ma2 0.06465
omega 0.19151
alpha1 0.14876
beta1 0.17790
Asymptotic Critical Values (10% 5% 1%)
Joint Statistic: 1.69 1.9 2.35
Individual Statistic: 0.35 0.47 0.75
Sign Bias Test
------------------------------------
t-value prob sig
Sign Bias 1.8345 0.0675 *
Negative Sign Bias 0.9783 0.3286
Positive Sign Bias 1.0518 0.2937
Joint Effect 3.3656 0.3386
Adjusted Pearson Goodness-of-Fit Test:
------------------------------------
group statistic p-value(g-1)
1 20 14.92 0.7276
2 30 26.37 0.6056
3 40 37.22 0.5514
4 50 37.43 0.8863
Elapsed time : 0.131995
Modelo GARCH (1,3)
ugarch13 = ugarchspec (mean.model = list (armaOrder = c (1 ,3 )))
ugfit13 = ugarchfit (spec = ugarch13, data = D_Serie_plomo_boxCox)
ugfit13
*---------------------------------*
* GARCH Model Fit *
*---------------------------------*
Conditional Variance Dynamics
-----------------------------------
GARCH Model : sGARCH(1,1)
Mean Model : ARFIMA(1,0,3)
Distribution : norm
Optimal Parameters
------------------------------------
Estimate Std. Error t value Pr(>|t|)
mu 0.010347 0.007322 1.41303 0.157646
ar1 -0.845299 0.177174 -4.77102 0.000002
ma1 -0.139790 0.179874 -0.77715 0.437068
ma2 -0.665335 0.162677 -4.08991 0.000043
ma3 0.189409 0.055373 3.42062 0.000625
omega 0.007103 0.008057 0.88157 0.378008
alpha1 0.020880 0.016400 1.27314 0.202968
beta1 0.961545 0.025225 38.11927 0.000000
Robust Standard Errors:
Estimate Std. Error t value Pr(>|t|)
mu 0.010347 0.007088 1.4599 0.144330
ar1 -0.845299 0.094567 -8.9387 0.000000
ma1 -0.139790 0.115530 -1.2100 0.226285
ma2 -0.665335 0.084815 -7.8446 0.000000
ma3 0.189409 0.051972 3.6444 0.000268
omega 0.007103 0.005488 1.2943 0.195560
alpha1 0.020880 0.016301 1.2809 0.200229
beta1 0.961545 0.017991 53.4471 0.000000
LogLikelihood : -316.7772
Information Criteria
------------------------------------
Akaike 1.9624
Bayes 2.0543
Shibata 1.9613
Hannan-Quinn 1.9991
Weighted Ljung-Box Test on Standardized Residuals
------------------------------------
statistic p-value
Lag[1] 0.02783 0.8675
Lag[2*(p+q)+(p+q)-1][11] 1.68543 1.0000
Lag[4*(p+q)+(p+q)-1][19] 5.79123 0.9782
d.o.f=4
H0 : No serial correlation
Weighted Ljung-Box Test on Standardized Squared Residuals
------------------------------------
statistic p-value
Lag[1] 0.173 0.6775
Lag[2*(p+q)+(p+q)-1][5] 1.341 0.7789
Lag[4*(p+q)+(p+q)-1][9] 2.739 0.8011
d.o.f=2
Weighted ARCH LM Tests
------------------------------------
Statistic Shape Scale P-Value
ARCH Lag[3] 0.07763 0.500 2.000 0.7805
ARCH Lag[5] 2.27391 1.440 1.667 0.4138
ARCH Lag[7] 3.19721 2.315 1.543 0.4771
Nyblom stability test
------------------------------------
Joint Statistic: 1.7521
Individual Statistics:
mu 0.11114
ar1 0.65376
ma1 0.86535
ma2 0.06299
ma3 0.22298
omega 0.19740
alpha1 0.15064
beta1 0.18425
Asymptotic Critical Values (10% 5% 1%)
Joint Statistic: 1.89 2.11 2.59
Individual Statistic: 0.35 0.47 0.75
Sign Bias Test
------------------------------------
t-value prob sig
Sign Bias 1.8057 0.07189 *
Negative Sign Bias 0.9135 0.36166
Positive Sign Bias 1.0711 0.28492
Joint Effect 3.2671 0.35225
Adjusted Pearson Goodness-of-Fit Test:
------------------------------------
group statistic p-value(g-1)
1 20 15.65 0.6807
2 30 21.11 0.8549
3 40 44.47 0.2523
4 50 59.79 0.1390
Elapsed time : 0.133106
Modelo GARCH (1,4)
ugarch14 = ugarchspec (mean.model = list (armaOrder = c (1 ,4 )))
ugfit14 = ugarchfit (spec = ugarch14, data = D_Serie_plomo_boxCox)
ugfit14
*---------------------------------*
* GARCH Model Fit *
*---------------------------------*
Conditional Variance Dynamics
-----------------------------------
GARCH Model : sGARCH(1,1)
Mean Model : ARFIMA(1,0,4)
Distribution : norm
Optimal Parameters
------------------------------------
Estimate Std. Error t value Pr(>|t|)
mu 0.010186 0.007067 1.44142 0.14947
ar1 -0.695216 0.929908 -0.74762 0.45469
ma1 -0.299613 0.934070 -0.32076 0.74839
ma2 -0.489851 0.921389 -0.53164 0.59497
ma3 0.186250 0.138820 1.34167 0.17970
ma4 -0.057204 0.085977 -0.66535 0.50583
omega 0.007056 0.008129 0.86790 0.38545
alpha1 0.021061 0.016512 1.27555 0.20211
beta1 0.961385 0.025428 37.80839 0.00000
Robust Standard Errors:
Estimate Std. Error t value Pr(>|t|)
mu 0.010186 0.007027 1.44969 0.14714
ar1 -0.695216 2.393740 -0.29043 0.77149
ma1 -0.299613 2.413828 -0.12412 0.90122
ma2 -0.489851 2.378788 -0.20592 0.83685
ma3 0.186250 0.329677 0.56495 0.57211
ma4 -0.057204 0.173712 -0.32930 0.74193
omega 0.007056 0.005652 1.24824 0.21194
alpha1 0.021061 0.017016 1.23777 0.21580
beta1 0.961385 0.018732 51.32318 0.00000
LogLikelihood : -316.4512
Information Criteria
------------------------------------
Akaike 1.9665
Bayes 2.0699
Shibata 1.9650
Hannan-Quinn 2.0077
Weighted Ljung-Box Test on Standardized Residuals
------------------------------------
statistic p-value
Lag[1] 0.0001623 0.9898
Lag[2*(p+q)+(p+q)-1][14] 3.0826708 1.0000
Lag[4*(p+q)+(p+q)-1][24] 7.9994739 0.9705
d.o.f=5
H0 : No serial correlation
Weighted Ljung-Box Test on Standardized Squared Residuals
------------------------------------
statistic p-value
Lag[1] 0.1665 0.6832
Lag[2*(p+q)+(p+q)-1][5] 1.3046 0.7878
Lag[4*(p+q)+(p+q)-1][9] 2.8402 0.7850
d.o.f=2
Weighted ARCH LM Tests
------------------------------------
Statistic Shape Scale P-Value
ARCH Lag[3] 0.09564 0.500 2.000 0.7571
ARCH Lag[5] 2.24045 1.440 1.667 0.4205
ARCH Lag[7] 3.36065 2.315 1.543 0.4482
Nyblom stability test
------------------------------------
Joint Statistic: 2.3943
Individual Statistics:
mu 0.12112
ar1 0.57946
ma1 0.69639
ma2 0.02841
ma3 0.14808
ma4 0.56082
omega 0.20442
alpha1 0.15297
beta1 0.18833
Asymptotic Critical Values (10% 5% 1%)
Joint Statistic: 2.1 2.32 2.82
Individual Statistic: 0.35 0.47 0.75
Sign Bias Test
------------------------------------
t-value prob sig
Sign Bias 2.554 0.01111 **
Negative Sign Bias 1.476 0.14078
Positive Sign Bias 1.400 0.16246
Joint Effect 6.523 0.08876 *
Adjusted Pearson Goodness-of-Fit Test:
------------------------------------
group statistic p-value(g-1)
1 20 16.98 0.5915
2 30 27.82 0.5275
3 40 37.46 0.5402
4 50 43.47 0.6960
Elapsed time : 0.177067
Modelo GARCH (2,1)
ugarch21 = ugarchspec (mean.model = list (armaOrder = c (2 ,1 )))
ugfit21 = ugarchfit (spec = ugarch21, data = D_Serie_plomo_boxCox)
ugfit21
*---------------------------------*
* GARCH Model Fit *
*---------------------------------*
Conditional Variance Dynamics
-----------------------------------
GARCH Model : sGARCH(1,1)
Mean Model : ARFIMA(2,0,1)
Distribution : norm
Optimal Parameters
------------------------------------
Estimate Std. Error t value Pr(>|t|)
mu 0.010511 0.007609 1.38134 0.167174
ar1 -0.293959 0.084594 -3.47495 0.000511
ar2 -0.101256 0.076193 -1.32894 0.183867
ma1 -0.698508 0.068083 -10.25972 0.000000
omega 0.007180 0.008009 0.89646 0.370006
alpha1 0.021131 0.016064 1.31542 0.188370
beta1 0.961075 0.024798 38.75665 0.000000
Robust Standard Errors:
Estimate Std. Error t value Pr(>|t|)
mu 0.010511 0.007233 1.4533 0.146152
ar1 -0.293959 0.087315 -3.3666 0.000761
ar2 -0.101256 0.081690 -1.2395 0.215151
ma1 -0.698508 0.057143 -12.2238 0.000000
omega 0.007180 0.005485 1.3089 0.190556
alpha1 0.021131 0.015529 1.3607 0.173600
beta1 0.961075 0.017531 54.8205 0.000000
LogLikelihood : -317.6742
Information Criteria
------------------------------------
Akaike 1.9618
Bayes 2.0422
Shibata 1.9609
Hannan-Quinn 1.9938
Weighted Ljung-Box Test on Standardized Residuals
------------------------------------
statistic p-value
Lag[1] 0.0004629 0.9828
Lag[2*(p+q)+(p+q)-1][8] 0.7796213 1.0000
Lag[4*(p+q)+(p+q)-1][14] 3.4857826 0.9905
d.o.f=3
H0 : No serial correlation
Weighted Ljung-Box Test on Standardized Squared Residuals
------------------------------------
statistic p-value
Lag[1] 0.2403 0.6240
Lag[2*(p+q)+(p+q)-1][5] 1.3893 0.7671
Lag[4*(p+q)+(p+q)-1][9] 2.8927 0.7766
d.o.f=2
Weighted ARCH LM Tests
------------------------------------
Statistic Shape Scale P-Value
ARCH Lag[3] 0.1036 0.500 2.000 0.7475
ARCH Lag[5] 2.2627 1.440 1.667 0.4160
ARCH Lag[7] 3.3196 2.315 1.543 0.4553
Nyblom stability test
------------------------------------
Joint Statistic: 1.0423
Individual Statistics:
mu 0.10521
ar1 0.26764
ar2 0.09025
ma1 0.33217
omega 0.19383
alpha1 0.14957
beta1 0.18087
Asymptotic Critical Values (10% 5% 1%)
Joint Statistic: 1.69 1.9 2.35
Individual Statistic: 0.35 0.47 0.75
Sign Bias Test
------------------------------------
t-value prob sig
Sign Bias 1.851 0.06514 *
Negative Sign Bias 1.023 0.30694
Positive Sign Bias 1.066 0.28716
Joint Effect 3.425 0.33058
Adjusted Pearson Goodness-of-Fit Test:
------------------------------------
group statistic p-value(g-1)
1 20 14.32 0.7649
2 30 24.92 0.6823
3 40 31.66 0.7919
4 50 33.80 0.9517
Elapsed time : 0.1504061
Modelo GARCH (2,2)
ugarch22 = ugarchspec (mean.model = list (armaOrder = c (2 ,2 )))
ugfit22 = ugarchfit (spec = ugarch22, data = D_Serie_plomo_boxCox)
ugfit22
*---------------------------------*
* GARCH Model Fit *
*---------------------------------*
Conditional Variance Dynamics
-----------------------------------
GARCH Model : sGARCH(1,1)
Mean Model : ARFIMA(2,0,2)
Distribution : norm
Optimal Parameters
------------------------------------
Estimate Std. Error t value Pr(>|t|)
mu 0.010434 0.007355 1.41858 0.156021
ar1 -0.677456 0.469146 -1.44402 0.148733
ar2 -0.181261 0.104939 -1.72730 0.084114
ma1 -0.313505 0.472376 -0.66368 0.506897
ma2 -0.298671 0.372262 -0.80231 0.422373
omega 0.007044 0.008033 0.87687 0.380556
alpha1 0.020839 0.016192 1.28702 0.198088
beta1 0.961666 0.025094 38.32232 0.000000
Robust Standard Errors:
Estimate Std. Error t value Pr(>|t|)
mu 0.010434 0.007069 1.47598 0.139950
ar1 -0.677456 0.361835 -1.87228 0.061168
ar2 -0.181261 0.075117 -2.41303 0.015820
ma1 -0.313505 0.377701 -0.83003 0.406519
ma2 -0.298671 0.297684 -1.00331 0.315709
omega 0.007044 0.005484 1.28456 0.198947
alpha1 0.020839 0.015981 1.30395 0.192251
beta1 0.961666 0.018076 53.20016 0.000000
LogLikelihood : -317.2459
Information Criteria
------------------------------------
Akaike 1.9652
Bayes 2.0571
Shibata 1.9641
Hannan-Quinn 2.0019
Weighted Ljung-Box Test on Standardized Residuals
------------------------------------
statistic p-value
Lag[1] 0.001541 0.9687
Lag[2*(p+q)+(p+q)-1][11] 1.447172 1.0000
Lag[4*(p+q)+(p+q)-1][19] 5.565098 0.9845
d.o.f=4
H0 : No serial correlation
Weighted Ljung-Box Test on Standardized Squared Residuals
------------------------------------
statistic p-value
Lag[1] 0.2443 0.6211
Lag[2*(p+q)+(p+q)-1][5] 1.4016 0.7641
Lag[4*(p+q)+(p+q)-1][9] 2.9202 0.7721
d.o.f=2
Weighted ARCH LM Tests
------------------------------------
Statistic Shape Scale P-Value
ARCH Lag[3] 0.1159 0.500 2.000 0.7335
ARCH Lag[5] 2.2786 1.440 1.667 0.4129
ARCH Lag[7] 3.3624 2.315 1.543 0.4479
Nyblom stability test
------------------------------------
Joint Statistic: 1.7182
Individual Statistics:
mu 0.11285
ar1 0.26945
ar2 0.07508
ma1 0.44421
ma2 0.04502
omega 0.20008
alpha1 0.15272
beta1 0.18584
Asymptotic Critical Values (10% 5% 1%)
Joint Statistic: 1.89 2.11 2.59
Individual Statistic: 0.35 0.47 0.75
Sign Bias Test
------------------------------------
t-value prob sig
Sign Bias 2.125 0.03431 **
Negative Sign Bias 1.240 0.21598
Positive Sign Bias 1.143 0.25404
Joint Effect 4.522 0.21035
Adjusted Pearson Goodness-of-Fit Test:
------------------------------------
group statistic p-value(g-1)
1 20 16.37 0.6324
2 30 24.92 0.6823
3 40 31.42 0.8009
4 50 34.71 0.9388
Elapsed time : 0.1708441
Modelo GARCH (2,3)
ugarch23 = ugarchspec (mean.model = list (armaOrder = c (2 ,3 )))
ugfit23 = ugarchfit (spec = ugarch23, data = D_Serie_plomo_boxCox)
ugfit23
*---------------------------------*
* GARCH Model Fit *
*---------------------------------*
Conditional Variance Dynamics
-----------------------------------
GARCH Model : sGARCH(1,1)
Mean Model : ARFIMA(2,0,3)
Distribution : norm
Optimal Parameters
------------------------------------
Estimate Std. Error t value Pr(>|t|)
mu 0.010182 0.006859 1.48455 0.137664
ar1 0.327643 0.185212 1.76901 0.076892
ar2 -0.662035 0.147796 -4.47939 0.000007
ma1 -1.286391 0.168931 -7.61489 0.000000
ma2 1.146133 0.250298 4.57907 0.000005
ma3 -0.601682 0.130058 -4.62627 0.000004
omega 0.007298 0.008448 0.86377 0.387715
alpha1 0.020709 0.016272 1.27263 0.203149
beta1 0.960832 0.025731 37.34088 0.000000
Robust Standard Errors:
Estimate Std. Error t value Pr(>|t|)
mu 0.010182 0.006729 1.5131 0.130242
ar1 0.327643 0.222745 1.4709 0.141310
ar2 -0.662035 0.203244 -3.2573 0.001125
ma1 -1.286391 0.197606 -6.5099 0.000000
ma2 1.146133 0.347553 3.2977 0.000975
ma3 -0.601682 0.178842 -3.3643 0.000767
omega 0.007298 0.005900 1.2368 0.216147
alpha1 0.020709 0.015918 1.3009 0.193285
beta1 0.960832 0.017046 56.3674 0.000000
LogLikelihood : -316.8221
Information Criteria
------------------------------------
Akaike 1.9687
Bayes 2.0721
Shibata 1.9673
Hannan-Quinn 2.0099
Weighted Ljung-Box Test on Standardized Residuals
------------------------------------
statistic p-value
Lag[1] 0.3275 0.5672
Lag[2*(p+q)+(p+q)-1][14] 3.7336 1.0000
Lag[4*(p+q)+(p+q)-1][24] 8.7711 0.9340
d.o.f=5
H0 : No serial correlation
Weighted Ljung-Box Test on Standardized Squared Residuals
------------------------------------
statistic p-value
Lag[1] 0.0214 0.8837
Lag[2*(p+q)+(p+q)-1][5] 1.5697 0.7227
Lag[4*(p+q)+(p+q)-1][9] 3.4305 0.6863
d.o.f=2
Weighted ARCH LM Tests
------------------------------------
Statistic Shape Scale P-Value
ARCH Lag[3] 0.5403 0.500 2.000 0.4623
ARCH Lag[5] 3.0908 1.440 1.667 0.2769
ARCH Lag[7] 4.2882 2.315 1.543 0.3069
Nyblom stability test
------------------------------------
Joint Statistic: 1.9038
Individual Statistics:
mu 0.13580
ar1 0.11257
ar2 0.20693
ma1 0.25181
ma2 0.23450
ma3 0.06002
omega 0.21806
alpha1 0.15331
beta1 0.19999
Asymptotic Critical Values (10% 5% 1%)
Joint Statistic: 2.1 2.32 2.82
Individual Statistic: 0.35 0.47 0.75
Sign Bias Test
------------------------------------
t-value prob sig
Sign Bias 1.6283 0.1044
Negative Sign Bias 0.6426 0.5210
Positive Sign Bias 1.2354 0.2176
Joint Effect 2.9060 0.4063
Adjusted Pearson Goodness-of-Fit Test:
------------------------------------
group statistic p-value(g-1)
1 20 14.92 0.7276
2 30 27.10 0.5665
3 40 38.43 0.4959
4 50 47.10 0.5506
Elapsed time : 0.1782079
Modelo GARCH (2,4)
ugarch24 = ugarchspec (mean.model = list (armaOrder = c (2 ,4 )))
ugfit24 = ugarchfit (spec = ugarch24, data = D_Serie_plomo_boxCox)
ugfit24
*---------------------------------*
* GARCH Model Fit *
*---------------------------------*
Conditional Variance Dynamics
-----------------------------------
GARCH Model : sGARCH(1,1)
Mean Model : ARFIMA(2,0,4)
Distribution : norm
Optimal Parameters
------------------------------------
Estimate Std. Error t value Pr(>|t|)
mu 0.009989 0.007261 1.3758 0.16889
ar1 0.755847 0.039504 19.1334 0.00000
ar2 -0.874435 0.037315 -23.4336 0.00000
ma1 -1.752885 0.001468 -1193.7879 0.00000
ma2 1.887314 0.000584 3230.8775 0.00000
ma3 -1.077209 0.026768 -40.2431 0.00000
ma4 0.174974 0.021961 7.9674 0.00000
omega 0.007865 0.008166 0.9632 0.33545
alpha1 0.022316 0.016110 1.3852 0.16599
beta1 0.957617 0.025511 37.5374 0.00000
Robust Standard Errors:
Estimate Std. Error t value Pr(>|t|)
mu 0.009989 0.006933 1.4408 0.14965
ar1 0.755847 0.042403 17.8251 0.00000
ar2 -0.874435 0.037250 -23.4746 0.00000
ma1 -1.752885 0.001175 -1491.8900 0.00000
ma2 1.887314 0.000738 2556.1433 0.00000
ma3 -1.077209 0.026120 -41.2402 0.00000
ma4 0.174974 0.020168 8.6757 0.00000
omega 0.007865 0.006004 1.3101 0.19018
alpha1 0.022316 0.015660 1.4250 0.15416
beta1 0.957617 0.018207 52.5951 0.00000
LogLikelihood : -314.6303
Information Criteria
------------------------------------
Akaike 1.9615
Bayes 2.0764
Shibata 1.9598
Hannan-Quinn 2.0073
Weighted Ljung-Box Test on Standardized Residuals
------------------------------------
statistic p-value
Lag[1] 0.000615 0.9802
Lag[2*(p+q)+(p+q)-1][17] 3.879752 1.0000
Lag[4*(p+q)+(p+q)-1][29] 10.006373 0.9715
d.o.f=6
H0 : No serial correlation
Weighted Ljung-Box Test on Standardized Squared Residuals
------------------------------------
statistic p-value
Lag[1] 0.06964 0.7919
Lag[2*(p+q)+(p+q)-1][5] 1.28302 0.7930
Lag[4*(p+q)+(p+q)-1][9] 2.74459 0.8003
d.o.f=2
Weighted ARCH LM Tests
------------------------------------
Statistic Shape Scale P-Value
ARCH Lag[3] 0.05843 0.500 2.000 0.8090
ARCH Lag[5] 2.33959 1.440 1.667 0.4010
ARCH Lag[7] 3.31734 2.315 1.543 0.4557
Nyblom stability test
------------------------------------
Joint Statistic: 1.7919
Individual Statistics:
mu 0.11207
ar1 0.06687
ar2 0.06525
ma1 0.07417
ma2 0.06206
ma3 0.06885
ma4 0.10452
omega 0.17859
alpha1 0.13754
beta1 0.16406
Asymptotic Critical Values (10% 5% 1%)
Joint Statistic: 2.29 2.54 3.05
Individual Statistic: 0.35 0.47 0.75
Sign Bias Test
------------------------------------
t-value prob sig
Sign Bias 1.6715 0.09558 *
Negative Sign Bias 0.8077 0.41986
Positive Sign Bias 1.1762 0.24038
Joint Effect 2.8750 0.41130
Adjusted Pearson Goodness-of-Fit Test:
------------------------------------
group statistic p-value(g-1)
1 20 16.13 0.6486
2 30 33.98 0.2398
3 40 39.88 0.4310
4 50 44.98 0.6367
Elapsed time : 0.20351
Modelo GARCH (3,1)
ugarch31 = ugarchspec (mean.model = list (armaOrder = c (3 ,1 )))
ugfit31 = ugarchfit (spec = ugarch31, data = D_Serie_plomo_boxCox)
ugfit31
*---------------------------------*
* GARCH Model Fit *
*---------------------------------*
Conditional Variance Dynamics
-----------------------------------
GARCH Model : sGARCH(1,1)
Mean Model : ARFIMA(3,0,1)
Distribution : norm
Optimal Parameters
------------------------------------
Estimate Std. Error t value Pr(>|t|)
mu 0.009831 0.007114 1.38202 0.166966
ar1 -0.237161 0.096101 -2.46783 0.013593
ar2 -0.037521 0.095097 -0.39455 0.693173
ar3 0.060043 0.076529 0.78458 0.432700
ma1 -0.755241 0.074716 -10.10814 0.000000
omega 0.006904 0.007760 0.88962 0.373667
alpha1 0.021788 0.016081 1.35483 0.175473
beta1 0.961056 0.024249 39.63247 0.000000
Robust Standard Errors:
Estimate Std. Error t value Pr(>|t|)
mu 0.009831 0.006873 1.43043 0.152592
ar1 -0.237161 0.097891 -2.42271 0.015405
ar2 -0.037521 0.100967 -0.37161 0.710181
ar3 0.060043 0.069660 0.86196 0.388713
ma1 -0.755241 0.060686 -12.44499 0.000000
omega 0.006904 0.005358 1.28842 0.197599
alpha1 0.021788 0.015812 1.37790 0.168235
beta1 0.961056 0.017370 55.32952 0.000000
LogLikelihood : -316.6729
Information Criteria
------------------------------------
Akaike 1.9618
Bayes 2.0537
Shibata 1.9606
Hannan-Quinn 1.9984
Weighted Ljung-Box Test on Standardized Residuals
------------------------------------
statistic p-value
Lag[1] 0.002717 0.9584
Lag[2*(p+q)+(p+q)-1][11] 1.321887 1.0000
Lag[4*(p+q)+(p+q)-1][19] 5.506516 0.9859
d.o.f=4
H0 : No serial correlation
Weighted Ljung-Box Test on Standardized Squared Residuals
------------------------------------
statistic p-value
Lag[1] 0.2138 0.6438
Lag[2*(p+q)+(p+q)-1][5] 1.3679 0.7723
Lag[4*(p+q)+(p+q)-1][9] 2.9671 0.7644
d.o.f=2
Weighted ARCH LM Tests
------------------------------------
Statistic Shape Scale P-Value
ARCH Lag[3] 0.1394 0.500 2.000 0.7089
ARCH Lag[5] 2.2830 1.440 1.667 0.4120
ARCH Lag[7] 3.4629 2.315 1.543 0.4307
Nyblom stability test
------------------------------------
Joint Statistic: 1.9785
Individual Statistics:
mu 0.11717
ar1 0.32459
ar2 0.08229
ar3 0.39508
ma1 0.32534
omega 0.20236
alpha1 0.15393
beta1 0.18699
Asymptotic Critical Values (10% 5% 1%)
Joint Statistic: 1.89 2.11 2.59
Individual Statistic: 0.35 0.47 0.75
Sign Bias Test
------------------------------------
t-value prob sig
Sign Bias 2.531 0.01186 **
Negative Sign Bias 1.463 0.14437
Positive Sign Bias 1.355 0.17641
Joint Effect 6.408 0.09337 *
Adjusted Pearson Goodness-of-Fit Test:
------------------------------------
group statistic p-value(g-1)
1 20 16.85 0.5997
2 30 24.20 0.7192
3 40 33.83 0.7042
4 50 41.36 0.7728
Elapsed time : 0.121119
Modelo GARCH (3,2)
ugarch32 = ugarchspec (mean.model = list (armaOrder = c (3 ,2 )))
ugfit32 = ugarchfit (spec = ugarch32, data = D_Serie_plomo_boxCox)
ugfit32
*---------------------------------*
* GARCH Model Fit *
*---------------------------------*
Conditional Variance Dynamics
-----------------------------------
GARCH Model : sGARCH(1,1)
Mean Model : ARFIMA(3,0,2)
Distribution : norm
Optimal Parameters
------------------------------------
Estimate Std. Error t value Pr(>|t|)
mu 0.008950 0.006973 1.2834 0.199362
ar1 0.372878 0.055930 6.6668 0.000000
ar2 0.116392 0.063477 1.8336 0.066713
ar3 0.080350 0.063736 1.2607 0.207432
ma1 -1.373027 0.009566 -143.5268 0.000000
ma2 0.457797 0.006917 66.1821 0.000000
omega 0.006893 0.007456 0.9245 0.355226
alpha1 0.022881 0.016000 1.4301 0.152702
beta1 0.960092 0.023406 41.0184 0.000000
Robust Standard Errors:
Estimate Std. Error t value Pr(>|t|)
mu 0.008950 0.006730 1.3298 0.183579
ar1 0.372878 0.059105 6.3087 0.000000
ar2 0.116392 0.064855 1.7946 0.072711
ar3 0.080350 0.059511 1.3502 0.176959
ma1 -1.373027 0.006561 -209.2797 0.000000
ma2 0.457797 0.004852 94.3527 0.000000
omega 0.006893 0.005235 1.3167 0.187941
alpha1 0.022881 0.015322 1.4933 0.135356
beta1 0.960092 0.016563 57.9661 0.000000
LogLikelihood : -316.2401
Information Criteria
------------------------------------
Akaike 1.9652
Bayes 2.0686
Shibata 1.9638
Hannan-Quinn 2.0064
Weighted Ljung-Box Test on Standardized Residuals
------------------------------------
statistic p-value
Lag[1] 0.0005441 0.9814
Lag[2*(p+q)+(p+q)-1][14] 3.1748314 1.0000
Lag[4*(p+q)+(p+q)-1][24] 8.4258622 0.9529
d.o.f=5
H0 : No serial correlation
Weighted Ljung-Box Test on Standardized Squared Residuals
------------------------------------
statistic p-value
Lag[1] 0.1799 0.6715
Lag[2*(p+q)+(p+q)-1][5] 1.3048 0.7877
Lag[4*(p+q)+(p+q)-1][9] 2.8247 0.7875
d.o.f=2
Weighted ARCH LM Tests
------------------------------------
Statistic Shape Scale P-Value
ARCH Lag[3] 0.1063 0.500 2.000 0.7444
ARCH Lag[5] 2.2247 1.440 1.667 0.4237
ARCH Lag[7] 3.3163 2.315 1.543 0.4559
Nyblom stability test
------------------------------------
Joint Statistic: 1.8652
Individual Statistics:
mu 0.1209
ar1 0.5124
ar2 0.1089
ar3 0.1084
ma1 0.1028
ma2 0.1088
omega 0.1944
alpha1 0.1506
beta1 0.1811
Asymptotic Critical Values (10% 5% 1%)
Joint Statistic: 2.1 2.32 2.82
Individual Statistic: 0.35 0.47 0.75
Sign Bias Test
------------------------------------
t-value prob sig
Sign Bias 2.164 0.0312 **
Negative Sign Bias 1.210 0.2273
Positive Sign Bias 1.240 0.2158
Joint Effect 4.686 0.1963
Adjusted Pearson Goodness-of-Fit Test:
------------------------------------
group statistic p-value(g-1)
1 20 16.85 0.5997
2 30 27.64 0.5372
3 40 37.46 0.5402
4 50 51.33 0.3827
Elapsed time : 0.1440229
Modelo GARCH (3,3)
ugarch33 = ugarchspec (mean.model = list (armaOrder = c (3 ,3 )))
ugfit33 = ugarchfit (spec = ugarch33, data = D_Serie_plomo_boxCox)
Warning in arima(data, order = c(modelinc[2], 0, modelinc[3]), include.mean =
modelinc[1], : possible convergence problem: optim gave code = 1
*---------------------------------*
* GARCH Model Fit *
*---------------------------------*
Conditional Variance Dynamics
-----------------------------------
GARCH Model : sGARCH(1,1)
Mean Model : ARFIMA(3,0,3)
Distribution : norm
Optimal Parameters
------------------------------------
Estimate Std. Error t value Pr(>|t|)
mu 0.007646 0.000140 54.62758 0.00000
ar1 0.170414 0.000119 1435.98395 0.00000
ar2 -0.888152 0.000092 -9692.21943 0.00000
ar3 -0.147493 0.000090 -1636.69761 0.00000
ma1 -1.215910 0.000182 -6693.14455 0.00000
ma2 1.395152 0.000122 11423.98714 0.00000
ma3 -0.773084 0.000092 -8359.15899 0.00000
omega 0.007814 0.009716 0.80421 0.42128
alpha1 0.016873 0.011432 1.47598 0.13995
beta1 0.961803 0.013974 68.82895 0.00000
Robust Standard Errors:
Estimate Std. Error t value Pr(>|t|)
mu 0.007646 0.000226 33.84649 0.00000
ar1 0.170414 0.001263 134.87946 0.00000
ar2 -0.888152 0.001166 -761.73752 0.00000
ar3 -0.147493 0.000932 -158.21625 0.00000
ma1 -1.215910 0.002157 -563.58784 0.00000
ma2 1.395152 0.001805 772.97047 0.00000
ma3 -0.773084 0.000433 -1785.67791 0.00000
omega 0.007814 0.034929 0.22370 0.82299
alpha1 0.016873 0.070900 0.23798 0.81189
beta1 0.961803 0.161358 5.96069 0.00000
LogLikelihood : -303.3641
Information Criteria
------------------------------------
Akaike 1.8934
Bayes 2.0083
Shibata 1.8917
Hannan-Quinn 1.9393
Weighted Ljung-Box Test on Standardized Residuals
------------------------------------
statistic p-value
Lag[1] 0.2031 0.6522
Lag[2*(p+q)+(p+q)-1][17] 6.3861 1.0000
Lag[4*(p+q)+(p+q)-1][29] 13.9990 0.6141
d.o.f=6
H0 : No serial correlation
Weighted Ljung-Box Test on Standardized Squared Residuals
------------------------------------
statistic p-value
Lag[1] 0.000421 0.9836
Lag[2*(p+q)+(p+q)-1][5] 1.877322 0.6477
Lag[4*(p+q)+(p+q)-1][9] 3.524780 0.6701
d.o.f=2
Weighted ARCH LM Tests
------------------------------------
Statistic Shape Scale P-Value
ARCH Lag[3] 0.132 0.500 2.000 0.7164
ARCH Lag[5] 3.495 1.440 1.667 0.2256
ARCH Lag[7] 3.999 2.315 1.543 0.3468
Nyblom stability test
------------------------------------
Joint Statistic: 2.1823
Individual Statistics:
mu 0.009463
ar1 0.084749
ar2 0.040388
ar3 0.127400
ma1 0.112359
ma2 0.025122
ma3 0.127944
omega 0.240478
alpha1 0.156217
beta1 0.235842
Asymptotic Critical Values (10% 5% 1%)
Joint Statistic: 2.29 2.54 3.05
Individual Statistic: 0.35 0.47 0.75
Sign Bias Test
------------------------------------
t-value prob sig
Sign Bias 0.79369 0.4280
Negative Sign Bias 0.07393 0.9411
Positive Sign Bias 0.45202 0.6516
Joint Effect 1.06756 0.7849
Adjusted Pearson Goodness-of-Fit Test:
------------------------------------
group statistic p-value(g-1)
1 20 25.31 0.1505
2 30 21.48 0.8412
3 40 40.36 0.4100
4 50 43.47 0.6960
Elapsed time : 0.4752219
Modelo GARCH (3,4)
ugarch34 = ugarchspec (mean.model = list (armaOrder = c (3 ,4 )))
ugfit34 = ugarchfit (spec = ugarch34, data = D_Serie_plomo_boxCox)
Warning in arima(data, order = c(modelinc[2], 0, modelinc[3]), include.mean =
modelinc[1], : possible convergence problem: optim gave code = 1
*---------------------------------*
* GARCH Model Fit *
*---------------------------------*
Conditional Variance Dynamics
-----------------------------------
GARCH Model : sGARCH(1,1)
Mean Model : ARFIMA(3,0,4)
Distribution : norm
Optimal Parameters
------------------------------------
Estimate Std. Error t value Pr(>|t|)
mu 0.008015 0.000079 101.50629 0.00000
ar1 -0.058561 0.000042 -1402.70621 0.00000
ar2 -0.808669 0.000095 -8471.40062 0.00000
ar3 -0.385453 0.000094 -4092.49264 0.00000
ma1 -0.998260 0.000157 -6367.08244 0.00000
ma2 1.097369 0.000143 7655.44604 0.00000
ma3 -0.456657 0.000090 -5064.26237 0.00000
ma4 -0.207323 0.000063 -3280.09611 0.00000
omega 0.006964 0.007469 0.93243 0.35112
alpha1 0.020134 0.018875 1.06671 0.28610
beta1 0.960539 0.018883 50.86845 0.00000
Robust Standard Errors:
Estimate Std. Error t value Pr(>|t|)
mu 0.008015 0.000034 238.29797 0.000000
ar1 -0.058561 0.000303 -193.51751 0.000000
ar2 -0.808669 0.001139 -710.11115 0.000000
ar3 -0.385453 0.000165 -2336.75373 0.000000
ma1 -0.998260 0.001491 -669.52397 0.000000
ma2 1.097369 0.002044 536.92994 0.000000
ma3 -0.456657 0.000276 -1655.80388 0.000000
ma4 -0.207323 0.000516 -402.04624 0.000000
omega 0.006964 0.027471 0.25352 0.799865
alpha1 0.020134 0.183959 0.10945 0.912845
beta1 0.960539 0.253914 3.78293 0.000155
LogLikelihood : -300.8067
Information Criteria
------------------------------------
Akaike 1.8840
Bayes 2.0104
Shibata 1.8819
Hannan-Quinn 1.9344
Weighted Ljung-Box Test on Standardized Residuals
------------------------------------
statistic p-value
Lag[1] 0.3109 0.5771
Lag[2*(p+q)+(p+q)-1][20] 6.7537 1.0000
Lag[4*(p+q)+(p+q)-1][34] 16.3545 0.6244
d.o.f=7
H0 : No serial correlation
Weighted Ljung-Box Test on Standardized Squared Residuals
------------------------------------
statistic p-value
Lag[1] 0.0001802 0.9893
Lag[2*(p+q)+(p+q)-1][5] 1.8362757 0.6576
Lag[4*(p+q)+(p+q)-1][9] 3.6498050 0.6486
d.o.f=2
Weighted ARCH LM Tests
------------------------------------
Statistic Shape Scale P-Value
ARCH Lag[3] 0.132 0.500 2.000 0.7164
ARCH Lag[5] 3.523 1.440 1.667 0.2224
ARCH Lag[7] 4.240 2.315 1.543 0.3133
Nyblom stability test
------------------------------------
Joint Statistic: 2.6224
Individual Statistics:
mu 0.030452
ar1 0.098253
ar2 0.009115
ar3 0.078315
ma1 0.096031
ma2 0.010425
ma3 0.074367
ma4 0.053526
omega 0.239634
alpha1 0.160443
beta1 0.232196
Asymptotic Critical Values (10% 5% 1%)
Joint Statistic: 2.49 2.75 3.27
Individual Statistic: 0.35 0.47 0.75
Sign Bias Test
------------------------------------
t-value prob sig
Sign Bias 0.5411 0.5888
Negative Sign Bias 0.1697 0.8654
Positive Sign Bias 0.3600 0.7191
Joint Effect 0.6439 0.8863
Adjusted Pearson Goodness-of-Fit Test:
------------------------------------
group statistic p-value(g-1)
1 20 17.34 0.56696
2 30 33.80 0.24652
3 40 42.05 0.34018
4 50 66.13 0.05181
Elapsed time : 0.6751161
Comparamos el criterio de Akaike de estos modelos y elegimos el de menor valor.
Modelo GARCH (0,1): 1.9844 Modelo GARCH (0,2): 1.9519 Modelo GARCH (0,3): 1.9581 Modelo GARCH (0,4): 1.9603 Modelo GARCH (1,1): 1.9542 Modelo GARCH (1,2): 1.9579 Modelo GARCH (1,3): 1.9624 Modelo GARCH (1,4): 1.9665 Modelo GARCH (2,1): 1.9618 Modelo GARCH (2,3): 1.9687 Modelo GARCH (2,4): 1.9615 Modelo GARCH (3,1): 1.9618 Modelo GARCH (3,2): 1.9652 Modelo GARCH (3,3): 1.8934 Modelo GARCH (3,4): 1.8840
El mejor modelo es un GARCH(3,4) con un Akaike igual a 1.8840.
Modelo estimado
Para obtener la ecuación estimada de una serie temporal con un modelo ARIMA y un modelo GARCH, necesitamos combinar los componentes de cada modelo.
El modelo ARIMA(2,1,1)(2,0,0)[12] puede expresarse como:
\[[ (1 - \phi_1 B - \phi_2 B^2) (1 - B)^1 (y_t - \mu) = (1 + \theta_1 B) \varepsilon_t ]\]
Donde: \(- ( \phi_1 ) y ( \phi_2 )\) son los coeficientes autorregresivos. \(- ( \theta_1 )\) es el coeficiente de la parte de media móvil. \(- ( B )\) es el operador de rezago. \(- ( \mu )\) es la media del proceso. \(- ( \varepsilon_t )\) es el término de error.
Y el modelo GARCH(3,4) puede expresarse como:
\[[ \sigma_t^2 = \omega + \alpha*1* \varepsilon{t-1}^2 + \beta*1* \sigma{t-1}^2 + \alpha*2* \varepsilon{t-2}^2 + \beta*2* \sigma{t-2}^2 + \alpha*3* \varepsilon{t-3}^2 + \beta*3* \sigma{t-3}^2 + \alpha*4* \varepsilon{t-4}^2 ]\]
Donde: \(- ( \omega )\) es la constante. \(- ( \alpha\_i )\) son los coeficientes de la parte ARCH. \(- ( \beta\_i )\) son los coeficientes de la parte GARCH.